Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

THE HTTP SERIES

z ON

The Ultimate HTTP Guide

1/50

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

Table Of Contents

The HTTP series (Part 1): Overview of the basic concepts 3
The HTTP series (Part 2): Architectural aspects 12
The HTTP series (Part 3): Client identification 23
The HTTP series (Part 4): Authentication mechanisms 30
The HTTP series (Part 5): SECUrityot e 38
The HTTP ReferenCe . - o o o ot e e e e e e e e e e e e e e e e e e 49

2/50

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

The HTTP series (Part 1): Overview of the basic concepts

In this article, | will present you the basics of HTTP.

But why HTTP?

Why should | read about the HTTP you may ask yourself?

Well, if you are a software developer, you will understand how to write better applications by
learning how they communicate. If you are system architect or network admin, you will get
deeper knowledge on designing complicated network architectures.

The REST, which is very important architectural style nowadays is relying completely upon
utilizing HTTP features, so that makes HTTP even more important to understand. If you want to
make great RESTful applications, you must understand HTTP first.

So are you willing to pass on the chance to understand and learn the fundamental concepts
behind World Wide Web and network communication?

| hope not ?
The focus of the article will be on explaining the most important parts of HTTP as simply as
humanly possible. The idea is to organize all the useful information about HTTP in one place, to

save you the time of going through books and RFCs to find the information you need.

This is the first article of the HTTP series. It will give you a short introduction of the most
important concepts of the HTTP.

The HTTP series (Part 1): Overview of the basic concepts
The HTTP series (Part 2): Architectural aspects

The HTTP series (Part 3): Client identification

The HTTP series (Part 4): Authentication mechanisms

The HTTP series (Part 5): Security

The HTTP Reference

You will learn about:

e What the HTTP is exactly

e Resources

e How the messages are exchanged between Web Client and Web Server
e Messages and some message examples

e MIME types

e Reguest Methods

e Headers

e Status codes

3/50

https://code-maze.com/top-rest-api-best-practices/#whatdoesitmean
https://code-maze.com/http-series/
https://code-maze.com/http-series-part-2/
https://code-maze.com/http-series-part-3/
https://code-maze.com/http-series-part-4/
https://code-maze.com/http-series-part-5/
/the-http-reference

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

Without further ado, let’s dive in.

HTTP definition

The founder of HTTP is Tim Berners-Lee (the guy also considered to be the inventor of the
World Wide Web). Among other names important to the development of the HTTP is also Roy
Fielding, who is also the originator of the REST architectural style.

The Hypertext Transfer Protocol is the protocol that applications use to communicate with
each other. In essence, the HTTP is in charge of delegating all of the internets media files
between clients and servers. That includes HTML, images, text files, movies and everything in
between. And it does this quickly and reliably.

HTTP is the application protocol and not the transport protocol because it is used for the

communication in the application layer. To jog your memory here is how the Network Stack
looks like.

APPLICATION LAYER: HTTP

TRANSPORT LAYER: TCP

NETWORK LAYER: IP

LINK LAYER: ETHERNET DRIVER

HARDWARE LAYER: ETHERNET

4/50

https://en.wikipedia.org/wiki/Tim_Berners-Lee
https://en.wikipedia.org/wiki/Roy_Fielding
https://en.wikipedia.org/wiki/Roy_Fielding

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

From this image, you can clearly see the that the HTTP is the application protocol and that TCP
works on the transport layer.

Resources

Everything on the internet is a resource, and the HTTP works with resources. That includes

files, streams, services and everything else. HTML page is a resource, a youtube video is a
resource, your spreadsheet of daily tasks on a web application is a resource... You get the point.
And how do you differentiate one resource from another?

By giving them URLs (Uniform resource locators).

URL points to the unique location where your browser can find the resource.

How the messages are exchanged between Web Client and Web
Server

Every piece of content, every resource lives on some Web server (HTTP server). These servers
are expecting an HTTP request to provide those resources.

But how do you request a resource from a Web server?
You need an HTTP client of course ?
You are using an HTTP client right now to read this article. Web browsers are HTTP clients.

They communicate with HTTP servers to retrieve the resources to your computer. Some of the
most popular clients are Google’s Chrome, Mozilla’s Firefox, Opera, Apple’s Safari, and

5/50

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

unfortunately still infamous Internet Explorer.

Messages and some message examples

So how does the HTTP message look like?

Without talking too much about it, here are some examples of HTTP messages:
GET request

GET /repos/ CodeMazeBl og/ ConsuneRest f ul Api sExanpl es HTTP/ 1.1

Host: api.github.com

Cont ent - Type: application/json

Aut hori zation: Basic dGhhbnt zI EhhcnFsZCBSb21i YXVOLCBt dWNol GFweHI I Y2I hd
Gvk

Cache- Control : no-cache

POST request

POST /repos/ CodeMazeBl og/ ConsuneRest f ul Api sExanpl es/ hooks?access_t oken
=5643f 4128a9cf 974517346b2158d04c8aa7ad45f HITP/ 1.1

Host: api.github.com

Cont ent - Type: application/json

Cache- Control : no-cache

{
“url": "http://ww. exanpl e. conf exanpl e",
"events": |
"push"
1.
"name": "web",
"active": true,
"config": {
“url": "http://ww. exanpl e. conf exanpl e",
"content type": "json"
}
}

Here is the example of one GET and one POST request. Let’s go quickly through the different
parts of these requests.

6/50

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

The first line of the request is reserved for the request line. It consists of request method
name, request URI, and HTTP version.

Next few lines represent the request headers. Request headers provide additional info to the
requests, like content types request expects in response, authorization information etc,

For the GET request, the story ends right there. POST request can also have a body and carry
additional info in the form of a body message. In this case, it is a JISON message with additional
info on how the GitHub webhook should be created for the given repo specified in the URI. That
message is required for the webhook creation so we are using POST request to provide that
information to the GitHub API.

Request line and request headers must be followed by <CR><LF> (carriage return and line feed
\r\n), and there is a single empty line between message headers and message body that
contains only CRLF.

Reference for HTTP request: https://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html

And what do we get as a response to these requests?
Response message

HTTP/ 1.1 200 K

Server: G tHub.com

Date: Sun, 18 Jun 2017 13:10:41 GMI

Cont ent - Type: application/json; charset=utf-8
Tr ansf er- Encodi ng: chunked

Status: 200 OK

X-RateLimt-Limt: 5000

X- Rat eLi m t - Remai ni ng: 4996

X-RateLi mt-Reset: 1497792723

Cache-Control : private, max-age=60, s-naxage=60

{
"type": "Repository",
"id": 14437404,
"nane": "web",

"active": true,
"events": |

"push”
1,
"config": {
"content _type": "json",
"insecure_ssl": "0",
"url": "http://ww. exanpl e. conf exanpl e"

7150

http://www.code-maze.com/the-http-reference/#requestmethods
https://code-maze.com/the-http-reference#headers
https://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

1

"updated_at": "2017-06-18T12:17: 152",

"created_at": "2017-06-18T12: 03: 152",

"url": "https://api.github.confrepos/ CodeMazeBl og/ ConsuneRest f ul Ap
i sExanpl es/ hooks/ 14437404",

"test _url": "https://api.qgithub. conlrepos/ CodeMazeBl og/ ConsuneRest
ful Api sExanpl es/ hooks/ 14437404/ test ",

"ping_url": "https://api.github.conlrepos/ CodeMazeBl og/ ConsuneRest
f ul Api sExanpl es/ hooks/ 14437404/ pi ngs",

"l ast _response": {

"code": 422,
"status": "m sconfigured”,
"message": "lnvalid HITP Response: 404"

The response message is pretty much structured the same as the request, except the first line
that is called the status line, which surprising as it is, carries information about the response
status. ?

The status line is followed by the response headers and response body.
Reference for HTTP response: https://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

MIME types

MIME types are used as a standardized way to describe the file types on the internet. Your
browser has a list of MIME types and same goes for web servers. That way files can be
transferred the same way regardless of the operating system.

Fun fact is that MIME stands for Multipurpose Internet Mail Extension because they were
originally developed for the multimedia email. They were adapted to be used for HTTP and
several other protocols since.

Every MIME type consists of a type, subtype and a list of optional parameters in the following
format: type/subtype; optional parameters.

Here are a few examples:
Cont ent - Type: application/json

Content - Type: text/xm; charset=utf-8
Accept: image/gif

8/50

https://code-maze.com/the-http-reference#statuscodes
https://code-maze.com/the-http-reference#statuscodes
https://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

You can find the list of commonly used MIME types and subtypes in the HTTP reference.

Request Methods

HTTP request methods (referred to also as “verbs”) define the action that will be performed on
the resource. HTTP defines several request methods of which the most commonly known/used
are GET and POST methods.

A request method can be idempotent or not idempotent. This is just a fancy term for explaining
that method is safe/unsafe to be called several times on the same resources. In other words,
that means that GET method, that has a sole purpose of retrieving information, should by
default be idempotent. Calling GET on the same resource over and over should not result with a
different response. On the other hand POST method is not an idempotent method.

Prior to HTTP/1.1, there were just three methods: GET, POST and HEAD, and the specification
of the HTTP/1.1 brought a few more in the play: OPTIONS, PUT, DELETE, TRACE and
CONNECT.

Find more what each one of these methods does in the HTTP Reference.

Headers

Header fields are colon-separated name-value fields you can find just after the first line of
request or response message. They provide more context to the HTTP messages and ensure
clients and servers are appropriately informed about the nature of the request or response.

There are five types of headers in total:

¢ General headers: These headers are useful to both server and client. One good
example is the Date header field which provides the information about the time of the
message creation.

¢ Request headers: Specific to the request messages. They provide the server with
additional information. For example, Accept: */* header field informs the server that the
client is willing to receive any media type.

¢ Response headers: Specific to the response messages. They provide the client with
additional information. For example, Allow: GET, HEAD, PUT header field informs the
client which methods are allowed for the requested resource.

¢ Entity headers: These headers deal with entity body. For example, Content-Type:
text/ntml header lets the application know that the data is HTML document.

e Extension headers: These are nonstandard headers constructed by application
developers. They are not the part of HTTP but need to be tolerated.

9/50

https://code-maze.com/the-http-reference/#mimetypes
http://www.code-maze.com/the-http-reference#requestmethods
https://code-maze.com/the-http-reference#requestmethods

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

You can find the list of commonly used request and response headers in the HTTP _Reference.

Status codes

Uh oh, 404.

Don’'t worry, we've got
someone on it.

The status code is a three digit number that denotes the result of a request. It is followed by
the reason phrase which is humanly readable status code explanation.

Some examples include:
e 200 OK
e 404 Not Found
e 500 Internal Server Error

The status codes are classified by the range in five different groups.

Both status code classification and the entire list of status codes and their meaning can be
found in the HTTP Reference.

Conclusion

Phew, that was a lot of information.

10/50

https://code-maze.com/the-http-reference#headers
https://code-maze.com/the-http-reference#statuscodes

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

The knowledge you gain by learning HTTP is not the kind that helps you to solve some problem
directly. But it gives you the understanding the underlying principle of the internet
communication which you can apply to almost every other problem on the higher level than
HTTP. Whether it is REST, APIs, web application development or network, you can now be at
least a bit more confident while solving these kinds of problems.

Of course, HTTP is a pretty large topic to talk about and there is still a lot more to it than the
basic concepts.

Read about the architectural aspects of HTTP in part 2 of the HTTP series.

Was this article helpful to you? Please leave the comment and let me know.

References:

e The HTTP/1.1 specification: http://www.ietf.org/rfc/rfc2616.txt
e The HTTP reference: https://code-maze.com/the-http-reference
e HTTP: The Definitive Guide: http://shop.oreilly.com/product/9781565925090.do

11/50

https://code-maze.com/http-series-part-2/
https://code-maze.com/http-series/
http://www.ietf.org/rfc/rfc2616.txt
https://code-maze.com/the-http-reference
http://shop.oreilly.com/product/9781565925090.do

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

The HTTP series (Part 2): Architectural aspects

In the first article of the series, we talked about the basic concepts of the HTTP. Now that we
have some foundation to build upon, we can talk about some of the architectural aspects of the
HTTP. There is more to HTTP than just sending and receiving data.

HTTP cannot function by itself as an application protocol. It needs infrastructure in form of a
hardware and software solutions that provide different services and make the communication
over the World Wide Web possible and efficient.

This is what we have learned so far, and where we are now:

The HTTP series (Part 1): Overview of the basic concepts
The HTTP series (Part 2): Architectural aspects

The HTTP series (Part 3): Client identification

The HTTP series (Part 4): Authentication mechanisms
The HTTP series (Part 5): Security

The HTTP Reference

In this article, you will learn more about:

e Web Servers

e Proxy Servers

e Caching

Gateways, Tunnels, and Relays
Web Crawlers

These are an integral part of our internet life, and you will learn exactly what the purpose of
each one of these is, and how it works. This knowledge will help you connect the dots from the
first article, and understand the flow of the HTTP communication even better.

So let’s start.

Web Servers

As the first article explained, the primary function of a Web server is to store the resources and
to serve them upon receiving requests. You access the Web server using a Web client (aka
Web browser) and in return get the requested resource or change the state of existing ones.
Web servers can be accessed automatically too, using Web crawlers, that we will talk about
later in the article.

12/50

https://code-maze.com/http-protocol-overview-part1/
https://code-maze.com/http-protocol-overview-part1/
https://code-maze.com/http-series-part-3/
https://code-maze.com/http-series-part-4/
https://code-maze.com/http-series-part-5/
https://code-maze.com/http-protocol-overview-part1/
http://www.code-maze.com/http-protocol-overview-part1/#Resources

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

Some of the most popular Web servers out there and probably the ones you heard of are
Apache HTTP Server, Nginx, IS, Glassfish...

Web servers can vary from the very simple and easy to use, to sophisticated and complicated
pieces of software. Modern Web servers are capable of performing a lot of different tasks. Basic
tasks that Web server should be able to do:

e Set up connection — accept or close client connection

¢ Receive request —read an HTTP request message

* Process request — interpret the request message and take action

e Access resource — access the resource specified in the message

e Construct response — create the HTTP response message

e Send response — send the response back to the client

¢ Log transaction — write about the completed transaction in a log file

| will break up the basic flow of the Web server in a few different Phases. These phases
represent a very simplified version of the Web server flow.

Phase 1: Setting up connection
When Web client wants to access the Web server, it must try to open a new TCP connection.
On the other side, the server tries to extract the IP address of the client. After that, it is up to the

server to decide to open or close the TCP connection to that client.

If the server accepts the connection, it adds it to the list of existing connections and watches the
data on that connection.

It can also close the connection if the client is not authorized or blacklisted (malicious).

The server can also try to identify the hosthame of the client by using the “reverse DNS”. This
information can help when logging the messages, but hostname lookups can take a while,

13/50

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

slowing the transactions.
Phase 2: Receiving/Processing requests

When parsing the incoming requests, Web servers parse the information from the message
request line, headers, and body (if provided). One thing to note is that the connection can pause
at any time, and in that case, the server must store the information temporarily until it receives
the rest of the data.

High-end Web servers should be able to open many simultaneous connections. This includes
multiple simultaneous connections from the same client. A typical web page can request many
different resources from the server.

Phase 3: Accessing the resource

Since Web servers are primarily the resource providers, they have multiple ways to map and
access the resources.

The simplest way is to map the resource is to use the request URI to find the file in the Web
server’s filesystem. Typically, the resources are contained in a special folder on the server,
called docroot. For example, docroot on the Windows server can be located on
F\WebResources\. If a GET request wants to access the file on the /images/codemazeblog.txt,
the server translates this to F:\WebResources\images\codemazeblog.txt and returns that file in
the response message. When more than one website is hosted on a Web server, each one can
have its separate docroot.

If a Web server receives a request for a directory instead of a file, it can resolve it in a few ways.
It can return an error message, return default index file instead of the directory or scan the
directory and return the HTML file with contents.

The server may also map the request URI to the dynamic resource — a software application that
generates some result. There is a whole class of servers called application servers which
purpose is to connect web servers to the complicated software solutions and serve dynamic
content.

Phase 3: Generating and sending the response

Once the server identified the resource it needs to serve, it forms the response message. The
response message contains the status code, response headers, and response body if one was
needed.

If the body is present in the response, the message usually contains the Content-Length header
describing the size of the body and the Content-Type header describing the MIME type of the

returned resource.

After generating the response, the server chooses the client it needs to send the response to.

14 /50

https://code-maze.com/http-protocol-overview-part1/#messages
https://code-maze.com/http-protocol-overview-part1/#messages
https://code-maze.com/the-http-reference/#statuscodes
https://code-maze.com/the-http-reference/#headers
https://code-maze.com/http-protocol-overview-part1/#mimetypes

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

For the nonpersistent connections, the server needs to close the connection when the entire
response message is sent.

Phase 4: Logging

When the transaction is complete, the server logs all the transaction information in the file. Many
servers provide logging customizations.

Proxy Servers

Proxy servers (proxies) are the intermediary servers. They are often found between the Web
server and Web client. Due to their nature, proxy servers need to behave both like Web client
and Web server.

But why do we need Proxy servers? Why don’t we just communicate directly between Web
clients and Web servers? Isn’t that much simpler and faster?

Well, simple it may be, but faster, not really. But we will come to that.

Before explaining what proxy servers are used for, | need to get one thing out of the way. That
is the concept of reverse proxy or the difference between the forward proxy and reverse

proxy.

The forward proxy acts as a proxy for the client requesting the resource from a Web server. It
protects the client by filtering requests through the firewall or hiding the information about the
client. The reverse proxy, on the other hand, works exactly the opposite way. It is usually placed
behind the firewall and protects the Web servers. For all the clients know, they talk to the real
Web server and remain unaware of the network behind the reverse proxy.

Proxy server

COCHICD
Internet V U Internet

Proxy

15/50

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

Reverse proxy server

Internal network

COCHE
Internet U

Proxy Web server

Proxies are very useful and their application is pretty wide. Let’s go through some of the ways
the proxy servers are used.

e Compression — Compressing the content directly increases the communication speed.
Simple as that.

e Monitoring and filtering — Want to deny access to adult websites to the children in the
elementary school? The proxy is the right solution for you ?

e Security — Proxies can serve as a single entry point to the entire network. They can
detect malicious applications and restrict application level protocols.

* Anonymity — Requests can be modified by the proxy to achieve greater anonymity. It
can strip the sensitive information from the request and leave just the important stuff.
Although sending less information to the server might degrade the user experience,
anonymity is sometimes the more important factor.

e Access control — Pretty straightforward, you can centralize the access control of the
many servers on a single proxy server.

e Caching — You can use the proxy server to cache the popular content, and thus greatly
reduce the loading speeds.

¢ Load balancing — If you have a service that gets a lot of “peak traffic” you can use a
proxy to distribute the workload on more computing resources or Web servers. Load
balancers route traffic to avoid overloading the single server when the peak happens.

* Transcoding — Changing the contents of the message body can also be the
proxy’s responsibility

As you can see, proxies can be very versatile and flexible.
Caching

Web caches are devices that automatically make copies of the requested data and save them in
the local storage.

16 /50

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

By doing this, they can:

Reduce traffic flow

Eliminate network bottlenecks

e Prevent server overload

Reduce the response delay on long distances

So you can clearly say that Web caches improve both user experience and Web server
performance. And of course, potentially save a lot of money.

The fraction of the requests served from the cache is called Hit Rate. It can range from O to 1,
where 0 is 0% and 1 is 100% request served. The ideal goal is of course to achieve 100%, but
the real number is usually closer to 40%.

Here is how the basic Web cache workflow looks like:

17/50

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

Request data

Not Found
Find data in

the storage

Fetch data

Update cache

Return data

Return data

Gateways, Tunnels, and Relays

In time, as the HTTP matured, people found many different ways to use it. HTTP became useful
as a framework to connect different applications and protocols.

Let's see how.

18/50

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

Gateways

Gateways refer to pieces of hardware that can enable HTTP to communicate with different
protocols and applications by abstracting a way to get a resource. They are also called the
protocol converters and are far more complex than routers or switches due to the usage of
multiple protocols.

You can, for example, use a gateway to get the file over FTP by sending an HTTP request. Or
you can receive an encrypted message over SSL and convert it to HTTP (Client-Side Security
Accelerator Gateways) or convert HTTP to more secure HTTPs message (Server-Side Security
Gateways).

Tunnels

Tunnels make use of the CONNECT request method. Tunnels enable sending non-HTTP data
over HTTP. The CONNECT method asks the tunnel to open a connection to the destination
server and to relay the data between client and server.

CONNECT request:

CONNECT api . gi t hub. com 443 HTTP/ 1.0

User - Agent: Chrone/ 58.0.3029.110
Accept: text/htm ,application/xhtm +xm , application/xm

CONNECT response:

HTTP/ 1.0 200 Connecti on Establi shed
Proxy-agent: Netscape-Proxy/1l.1

The CONNECT response doesn’t need to specify the Content-Type unlike a normal HTTP
response would.

Once the connection is established, the data can be sent between client and server directly.
Relays

Relays are the outlaws of the HTTP world and they don’t need to abide by the HTTP laws.
They are dumbed-down versions of proxies that relay any information they receive as long as

they can establish a connection using the minimal information from the request messages.

They sole existence stems from the need to implement a proxy with as little trouble as possible.

19/50

https://code-maze.com/the-http-reference/#requestmethods

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

That can also potentially lead to trouble, but its use is very situational and there is certainly a
risk to benefit ratio to consider when implementing relays.

Web Crawlers

Or popularly called spiders, are bots that crawl over the World Wide Web and index its contents.
The Web crawler is the essential tool of Search engines and many other websites.

The web crawler is a fully automated piece of software and it doesn’t need human interaction to
work. The complexity of web crawlers can vary greatly, and some of the web crawlers are pretty
sophisticated pieces of software (like the ones search engines use).

Web crawlers consume the resources of the website they are visiting. For this reason, public
websites have a mechanism to tell the crawlers which parts of the website to crawl, or to tell
them not to crawl anything at all. This can be done by using the robots.txt (robots exclusion
standard).

Of course, since it is just a standard, robots.txt cannot prevent uninvited web crawlers to crawl
the website. Some of the malicious robots include email harvesters, spambots, and malware.

Here are a few examples of the robots.txt files:

User-agent: *
D sal l ow. /

20/50

https://en.wikipedia.org/wiki/Email_address_harvesting
https://en.wikipedia.org/wiki/Spambots
https://en.wikipedia.org/wiki/Malware

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

This one tells all the crawlers to stay out.

User-agent: *

Di sal | ow. /sonefol der/
Disallow. /notinterestingstuff/
Disallow /directory/file.htm

And this one refers only to these two specific directories and a single file.

User - agent: Googl ebot
Disallow /private/

You can disallow a specific crawler, like in this case.

Given the vast nature of the World Wide Web, even the most powerful crawlers ever made
cannot crawl and index the entirety of it. That's why they use selection policy to crawl the most
relevant parts of it. Also, the WWW changes frequently and dynamically, so the crawlers must
use the freshness policy to calculate whether to revisit websites or not. And since crawlers can
easily overburden the servers by requesting too much too fast, there is a politeness policy in
place. The most of the know crawlers use the intervals of 20 seconds to 3-4 minutes to poll the
servers to avoid generating the load on the server.

You might have heard the news of the mysterious and evil deep web or dark web. It is nothing
more than the part of the web, that is intentionally not indexed by search engines to hide the
information.

Conclusion

This wraps it up for this part of the HTTP series. You should now have an even better picture of
how the HTTP works, and that there is a lot more to it than requests, responses and status
codes. There is a whole infrastructure of different hardware and software pieces that HTTP
utilizes to achieve its potential as an application protocol.

Every concept | talked about in this article is large enough to cover the whole article or even a
book. My goal was to roughly present you with the different concepts so that you know how it all
fits together, and what to look for when needed.

If you found some of the explanations a bit short and unclear and you missed my previous
articles, be sure to visit part 1 of the series and the HTTP reference where | talk about basic
concepts of the HTTP.

21/50

https://code-maze.com/http-series/
https://code-maze.com/http-protocol-overview-part1/
https://code-maze.com/the-http-reference/

Code Maze

A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

Thank you for reading and stay tuned for part 3 of the series where | explain different ways
servers can use to identify the clients.

Please leave a comment below if you found this article useful, or you need something cleared
up.

References

The HTTP reference: https://code-maze.com/the-http-reference

The HTTP series part 1: https://code-maze.com/http-protocol-overview-partl
HTTP: The Definitive Guide: http://shop.oreilly.com/product/9781565925090.do
A good explanation of forward vs reverse proxy:
http://www.jscape.com/blog/bid/87783/Forward-Proxy-vs-Reverse-Proxy

22 /50

https://code-maze.com/http-series-part-3/
https://code-maze.com/the-http-reference
https://code-maze.com/http-protocol-overview-part1/
http://shop.oreilly.com/product/9781565925090.do
http://www.jscape.com/blog/bid/87783/Forward-Proxy-vs-Reverse-Proxy

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

The HTTP series (Part 3): Client identification

Up until now, you learned about the basic concepts and some of the architectural aspects of
HTTP. This leads us to the next important subject to the HTTP: client identification.

In this article, you'll learn why client identification is important and how can Web servers identify
you (your Web client). You will also get to see how that information is used and stored.

This is what we have learned so far, and where we are now:

The HTTP series (Part 1): Overview of the basic concepts
The HTTP series (Part 2): Architectural aspects

The HTTP series (Part 3): Client identification

The HTTP series (Part 4): Authentication mechanisms
The HTTP series (Part 5): Security

The HTTP Reference

In this article, you will learn more about:

e Client identification and why it's extremely important
Different ways to identify the client

HTTP request headers used for identification
IP address

Long (fat) URLs

Cookies

First, let's see why would websites need to identify you.

Client identification and why it’'s extremely important

As you are most definitely aware, every website, or at least those that care enough about you
and your actions, include some form of content personalization.

What do | mean by that?

Well, that includes suggested items if you visit e-commerce website, or “the people you might
know/want to connect with” on social networks, recommended videos, ads that almost spookily
know what you need, news articles that are relevant to you and so on.

This effect feels like a double edged sword. On one hand, it's pretty nifty having personalized,
custom content delivered to you. On the other hand, it can lead to Confirmation bias that can
result in all kinds stereotypes and prejudice. There is an excellent Dilbert comic that touches
upon Confirmation bias.

Yet, how can we live without knowing how our favorite team scored last night, or what

23/50

https://code-maze.com/http-protocol-overview-part1/
https://code-maze.com/http-series-part-2/
https://code-maze.com/http-series-part-4/
https://code-maze.com/http-series-part-5/
https://code-maze.com/http-protocol-overview-part1/
https://en.wikipedia.org/wiki/Confirmation_bias
http://dilbert.com/strip/2011-07-02

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

celebrities did last night?

Either way, content personalization has become part of our daily lives we can’t and we
probably don’t even want to do anything about it.

Let's see how the Web servers can identify you to achieve this effect.

Different ways to identify the client

There are several ways that a Web server can identify you:

HTTP request headers

IP address

Long URLs

Cookies

Login information (authentication)

Let's go through each one. HTTP authentication is described in more detail in part 4 of the
HTTP series.

HTTP request headers used for identification

Web servers have a few ways to extract information about you directly from the HTTP request
headers.

Those headers are:

e From — contains user’s email address if provided
¢ User-Agent — contains the information about Web client
* Referer — contains the source user came from

24 /50

https://code-maze.com/http-series-part-4/
https://code-maze.com/http-series/
https://code-maze.com/the-http-reference/#headers
https://code-maze.com/the-http-reference/#headers

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

Authorization — contains username and password

Client-ip — contains user’s IP address

X-Forwarded-For — contains user’s IP address (when going through the proxy server)
Cookie — contains server-generated ID label

In theory, the From header would be ideal to uniquely identify the user, but in practice, this
header is rarely used due to the security concerns of email collection.

The user-agent header contains the information like the browser version, operating system.
While this is important for customizing content, it doesn’t identify the user in a more relevant
way.

The Referer header tells the server where the user is coming from. This information is used to
improve the understanding of the user behavior, but less so to identify it.

While these headers provide some useful information about the client, it is not enough to
personalize content in a meaningful way.

The remaining headers offer more precise mechanisms of identification.

IP address

The method of client identification by IP address has been used more in the past when IP
addresses weren’t so easily faked/swapped. Although it can be used as an additional security
check, it just isn’t reliable enough to be used on its own.

Here are some of the reasons why:

* |t describes the machine, not the user

* NAT firewalls — many ISPs (Internet service providers) use NAT firewalls to enhance
security and deal with IP address shortage

e Dynamic IP addresses — users often get the dynamic IP address from the ISP

e HTTP proxies and gateways — these can hide the original IP address. Some proxies
use Client-ip or X-Forwarded-For to preserve the original IP address

Long (fat) URLs

It is not that uncommon to see websites utilize URLs to improve the user experience. They add
more information as the user browses the website until URLs look complicated and illegible.

You can see what the long URL looks like by browsing Amazon store.
htt ps://ww. anazon. com gp/ product/ 1942788002/ r ef =s9Qu_psi mh_gw i 2?i e=UT

F8&f pl =f resh&pd_rd_i =1942788002&pd_r d_r =70BRSEN2K19345MMSFO0&pd_rd_w=K
pLza&pd_rd_wg=gTIl eL&f rd_m=ATVPDKI KXODER&pf rd_s=&pf rd_r =RWRKQXA6PBH

25/50

https://code-maze.com/http-series-part-2/#proxyservers
https://code-maze.com/http-series-part-2/#proxyservers
https://code-maze.com/http-series-part-2/#gateways

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

QGE2JTRW2&pf _rd_t =36701&pf _rd_p=1cf 9d009- 399c- 49e1- 901a- 7b8786e59436&p
f _rd_i =desktop

There are several problems when using this approach.

It's ugly

Not shareable

Breaks caching

It's limited to that session
Increases the load on the server

Cookies

The best client identification method up to date excluding the authentication. Developed by
Netscape, but now every browser supports them.

There are two types of cookies: session cookies and persistent cookies. A session cookie is

deleted upon leaving the browser, and persistent cookies are saved on disk and can last longer.
For the session cookie to be treated as the persistent cookie, Max-Age or Expiry property needs
to be set.

Modern browsers like Chrome and Firefox can keep background processes working when you
shut them down so you can resume where you left off. This can result in the preservation of the
session cookies, so be careful.

So how do the cookies work?

Cookies contain a list of name=value pairs that server sets using Set-Cookie or Set-Cookie2
response header. Usually, the information stored in a cookie is some kind of client id, but some
websites store other information as well.

The browser stores this information in its cookie database and returns it when the user visits the
page/website next time. The browser can handle thousands of different cookies and it knows
when to serve each one.

Here is example flow.
1. User Agent -> Server

POST /acne/login HTTP/ 1.1
[form dat a]

26 /50

https://bugs.chromium.org/p/chromium/issues/detail?id=128513
https://bugs.chromium.org/p/chromium/issues/detail?id=128513
https://code-maze.com/the-http-reference/#headers
https://code-maze.com/the-http-reference/#headers

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

User identifies itself via form input
2. Server -> User Agent

HTTP/ 1.1 200 K
Set - Cooki e2: Custoner="WLE E COYOTE"; Version="1"; Path="/acne"

The server sends the Set-Cookie2 response header to instruct the User Agent (browser) to set
the information about the user in a cookie.

3. User Agent -> Server
POST /acne/ pi ckitem HTTP/ 1. 1

Cooki e: $Version="1"; Custoner="WLE E COYOTE"; $Pat h="/acne"
[f or m dat a]

The user selects the item to the shop basket.
4. Server -> User Agent
HTTP/ 1.1 200 K

Set - Cooki e2: Part _Nunber ="Rocket Launcher _0001"; Version="1"; Path="/a
cre"

Shopping basket contains an item.

5. User Agent -> Server

POST /acne/ shipping HITP/ 1.1

Cooki e: $Version="1"; Custoner="WLE E COYOTE"; $Path="/acne";

Part Nunber ="Rocket Launcher 0001";
[form dat a]

The user selects the shipping method.
6. Server -> User Agent

HTTP/ 1.1 200 OK

27150

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

Set - Cooki e2: Shi ppi ng="FedEx"; Version="1"; Path="/acnme"

New cookie reflects shipping method.
7. User Agent -> Server

POST /acne/ process HITP/ 1.1

Cooki e: $Version="1";
Cust oner="W LE_E COYOTE"; $Pat h="/acne";
Part Nunber =" Rocket Launcher 0001"; $Path="/acne";
Shi ppi ng="FedEx"; $Pat h="/acne"

[form dat a]

That's it.

There is one more thing | want you to be aware of. The cookies are not perfect either. Besides
security concerns, there is also a problem with cookies colliding with REST architectural style.
(The section about misusing cookies).

You can learn more about cookies in the REC 2965.

Conclusion

This wraps it up for this part of the HTTP series.

You have learned about the strengths of content personalization as well as it's potential pitfalls.
You are also aware of the different ways that servers can use to identify you. In part 4 of the

series, we will talk about the most important type of client identification: authentication.

If you found some of the concepts in this part unclear, refer to the part 1 and part 2 of the HTTP
series.

Thank you for reading and feel free to leave the comment below.

References

e The HTTP reference: https://code-maze.com/the-http-reference

The HTTP series part 1: https://code-maze.com/http-protocol-overview-partl
The HTTP series part 2: https://code-maze.com/http-series-part-2

HTTP: The Definitive Guide: http://shop.oreilly.com/product/9781565925090.do
Confirmation bias explained: https://en.wikipedia.org/wiki/Confirmation_bias

28 /50

https://www.infoq.com/articles/rest-anti-patterns
https://www.ietf.org/rfc/rfc2965.txt
https://code-maze.com/http-series/
https://code-maze.com/http-series-part-4/
https://code-maze.com/http-protocol-overview-part1/
https://code-maze.com/http-series-part-2/
https://code-maze.com/http-series/
https://code-maze.com/http-series/
https://code-maze.com/the-http-reference
https://code-maze.com/http-protocol-overview-part1/
https://code-maze.com/http-series-part-2/
http://shop.oreilly.com/product/9781565925090.do
https://en.wikipedia.org/wiki/Confirmation_bias

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

¢ REST anti-patterns: https://www.infog.com/articles/rest-anti-patterns
e Cookies RFC: https://www.ietf.org/rfc/rfc2965.txt

29/50

https://www.infoq.com/articles/rest-anti-patterns
https://www.ietf.org/rfc/rfc2965.txt

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

The HTTP series (Part 4): Authentication mechanisms

In the previous part, we've talked about the different ways that websites can use to identify the
visiting user.

But identification itself represents just a claim. When you identify yourself, you are claiming
that you are someone. But there is no proof of that.

Authentication, on the other hand, is showing a proof that you are what you claim to be, like
showing your personal id or typing in your password.

More often than not, the websites need that proof to serve you sensitive resources.

HTTP has its own authentication mechanisms that allow the servers to issue challenges and get
the proof they need. You will learn about what they are and how they work. We’ll also cover the
pros and cons of each one and find out if they are really good enough to be used on their own

(spoiler: they are not).

This is what we have learned so far:

The HTTP series (Part 1): Overview of the basic concepts
The HTTP series (Part 2): Architectural aspects

The HTTP series (Part 3): Client identification

The HTTP series (Part 4): Authentication mechanisms
The HTTP series (Part 5): Security

The HTTP Reference

In this article, you will learn more about:

e How HTTP authentication works
e Basic authentication
e Digest authentication

Before venturing deeper into the concrete HTTP authentication mechanisms, let's explore what
the HTTP authentication is.

How does the HTTP authentication work?

Authentication is a way to identify yourself to the Web server. You need to show proof that you
have the right to access the requested resources. Usually, this is done by using a combination
of username and password (key and secret) which the server validates and then decides if you
can access the resource.

HTTP offers two authentication protocols:

30/50

https://code-maze.com/http-series-part-3/
https://code-maze.com/http-protocol-overview-part1/
https://code-maze.com/http-series-part-2/
https://code-maze.com/http-series-part-3/
https://code-maze.com/http-series-part-5/
https://code-maze.com/http-protocol-overview-part1/
https://code-maze.com/http-series-part-4/#httpauth
https://code-maze.com/http-series-part-4/#basicauth
https://code-maze.com/http-series-part-4/#digestauth

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

e Basic authentication
e Digest authentication

Before learning more about each one, let’'s go through some of the basic concepts.

1. HTTP uses a challenge/response authentication framework

What does this mean?

It means that when someone sends a request, instead of responding to it immediately, the
server sends authentication challenge. It challenges the user to provide the proof of identity
by entering the secret information (username and password).

After that, the request is repeated using the provided credentials, and if they are correct, the
user gets the expected response. In case the credentials are wrong, the server can reissue the

challenge or just send the error message.

2. Authentication related request/response headers

The server issues the challenge by utilizing the WWW-Authenticate response header. It
contains the information about the authentication protocol and the security realm.

After the client inputs the credentials, the request is sent again. This time with the
Authorization header containing the authentication algorithm and the username/password

combination.

If the credentials are correct, the server returns the response and additional info in an optional
Authentication-Info response header.

3. Security realms

Security realms provide the way to associate different access right to different resource
groups on the server. These are called protection spaces.

What this means effectively is that depending on the resource you want to access, you might
need to enter different credentials.

The server can have multiple realms. For example, one would be for website statistics
information that only website admins can access, and another for website images that other
users can access and upload images to.

/admin/statistics/financials.txt -> Realm="Admin Statistics”

/images/imgl.jpg -> Realm = “Images”

When you try to access the financials.txt you will be challenged by the server and the response

31/50

https://code-maze.com/the-http-reference/#headers

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

from would look like this:

HTTP/ 1.0 401 Unaut hori zed
WAN Aut henticate: Basic real nE"Adnmn Statistics”

More about security realms: https://tools.ietf.org/html/rfc7235#section-2.2

Simple HTTP authentication example

Now let’'s connect the dots by looking at the simplest HTTP authentication example (Basic
authentication, explained below):

1. User Agent -> Server
The user requests access to some image on the server.

GET /gal l ery/ personal /i mages/i magel.jpg HITP/ 1.1
Host: www. sonedomai n. com

2. Server -> User Agent
The server sends the authentication challenge to the user.

HTTP/ 1.1 401 Access Deni ed
WAV Aut hent i cate: Basic real n="gallery"”

3. User Agent -> Server
The user identifies itself via form input.

GET /gal l ery/ personal /i mages/i magel.jpg HITP/ 1.1
Aut hori zation: Basic ZmBvOnwhcg==

4. Server -> User Agent

The server checks the credentials and sends the 200 OK status code and the image data.

32/50

https://tools.ietf.org/html/rfc7235#section-2.2
https://code-maze.com/the-http-reference/#statuscodes

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

HTTP/ 1.1 200 K
Content-type: image/|jpeg
...<i mage dat a>

Not that complicated, right?

Now let’s drill down and look into basic authentication.

Basic authentication

The most prevalent and supported authentication protocol out there. It has been around since
the HTTP/1.0 and every major client implements it.

The example above depicts how to authenticate by using Basic authentication. It's rather simple
to implement and use, but it has some security flaws.

Before going to the security issues, let's see how the Basic authentication deals with username
and password.

Basic authentication packs the username and password into one string and separates them
using the colon (:). After that, it encodes them using the Base64 encoding. Despite what it looks
like, the scrambled sequence of characters is not secure and it's easily decoded. The purpose
of the Base64 encoding is not to encrypt, but to make the username and password HTTP
compatible because international characters are not allowed in HTTP headers.

GET /gal l ery/ personal /i mages/imagel.jpg HITP/ 1.1
Aut hori zati on: Basic ZmBvOmlhcg==

The “Zm9vOmJhcg==" from this example is nothing more than Base64 encoded “foo:bar”
string.

So anyone listening to the requests can easily decode and use the credentials.

Even worse than that, encoding the username and password wouldn’t help. A malicious third
party could still send the scrambled sequence to achieve the same effect.

There is also no protection against proxies or any other type of attack that changes the
request body and leaves the request headers intact.

So, as you can see, Basic authentication is less than perfect mechanism.

33/50

https://www.rdegges.com/2015/why-i-love-basic-auth/
https://www.rdegges.com/2015/why-i-love-basic-auth/
https://en.wikipedia.org/wiki/Base64

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

Still, despite that, it can be used to prevent accidental access to protected resources and to
offer a degree of personalization.

To make it more secure and useable, Basic authentication can be implemented by using
HTTPS over SSL which we talk about in part 5 of the series.

Some would argue it's only as secure as your transport mechanism.
Digest authentication

Digest authentication was made as a more secure and reliable alternative to simple but insecure
Basic authentication.

So, how does it work?

Digest authentication uses MD5 cryptographic hashing combined with the usage of nonces to
hide the password information and prevent different kinds of malicious attacks.

This might sound a bit complicated, but it will get clearer when you see how it works on a simple
example.

Example

1. User Agent -> Server

GET /dir/index.html HTTP/ 1.0
Host: | ocal host

The client sends a unauthenticated request.
2. Server -> User Agent

HTTP/ 1.0 401 Unaut hori zed

WAV Aut henti cate: Di gest real n="shire@n ddl eeart h. cont,
gop="aut h,auth-int",
nonce="cnFuZ®t bH nZWsl cnF0ZWRub25j 2Q',
opaque="c29t ZXJhbnmRvbVWOWYXF1ZXNOcm uzZw"

Content - Type: text/htm

Cont ent - Lengt h: 153

<! DOCTYPE ht nl >

34/50

http://www.skorks.com/2009/08/is-basic-authentication-really-insecure

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

<htm >
<head>
<neta charset="UTF-8" />
<title>Error</title>
</ head>
<body>
<h1>401 Unaut hori zed. </ h1>
</ body>
</htm >

The server challenges the client to authenticate using the Digest authentication and sends the
required information to the client.

3. User Agent -> Server

GET /dir/index. htm HITP/ 1.0

Host: | ocal host

Aut hori zation: Di gest usernane="Gandal f",
real m="shire@n ddl eeart h. cont,
nonce="cnFuZ®t bH nZWsl cnF0ZWRub25j ZQ",
uri ="/dir/index.htm",
gop=aut h,
nc=00000001,
cnonce="0a4f 113b",
response="5alc3bb349cf 6986abf 985257d968d86" ,
opaque="c29t ZXJhbnmRvbVWOWYXF1ZXNOcm uzZw"

The client calculates the response value and sends it together with username, realm, URI,
nonce, opaque, qop, nc and cnonce. A lot of stuff.

Let's define these:

* nonce and opaque — the server defined strings that should be returned by the client as
they were received

e gop (quality of protection) — one or more of the predefined values (“auth” | “auth-int” |
token). These values affect the computation of the digest.

e cnonce — client nonce, must be generated if qop is set. It is used to avoid chosen
plaintext attacks and to provide message integrity protection.

* nc — nonce count, must be sent if qop is set. The purpose of this directive is to allow the
server to detect request replays by maintaining its own copy of this count — if the same
nc-value is seen twice, then the request is a replay.

35/50

https://en.wikipedia.org/wiki/Chosen-plaintext_attack
https://en.wikipedia.org/wiki/Chosen-plaintext_attack

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

The response attribute is calculated in the following way:

HA1 = MD5(" Gandal f: shire@n ddl eearth. com Lord Of The R ngs")
= 681028410e804a5h60f 69e894701d4b4

HA2 = MD5("GET: /dir/index.htm™")
= 39af f 3a2bab6126f 332b942af 96d3366

Response = MD5("681028410e804a5b60f 69€894701d4b4:

cnFuZ®&t bH nZWl cnFOZWRub25j ZQ

00000001: Oa4f 113b: aut h:

39af f 3a2bab6126f 332b942af 96d3366")
5alc3bb349cf 6986abf 985257d968d86

If you are interested in learning how to compute the response depending on qop, you can find it
in the REC 2617.

4. Server -> User Agent

HTTP/ 1.0 200 XK

Content - Type: text/html

Cont ent - Lengt h: 2345
<cont ent data>

The server computes the hash on its own and compares the two. If they match it serves the
client with the requested data.

As you can see the Digest authentication is more complicated to understand and implement.

It is also more secure than Basic authentication, but still vulnerable to man-in-the-middle attack.
REC 2617 recommends that Digest authentication is used instead of the Basic
authentication since it remedies some of its weaknesses. It also doesn’t hide the fact

that Digest authentication is still weak by modern cryptographic standards and that its
strength largely depends on the implementation.

So in summary digest authentication:
e does not send plain text passwords over the network
e prevents replay attacks
e guards against message tampering

Some of the weaknesses:

36/50

https://www.ietf.org/rfc/rfc2617.txt
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://www.ietf.org/rfc/rfc2617.txt

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

¢ vulnerability to the man-in-the-middle attack

* many of the security options are not required and thus make Digest authentication
function in a less secure manner if not set

¢ prevents the use of strong password hashing algorithms when storing passwords

Due to these facts, the Digest authentication still hasn’t gained major traction. The Basic
authentication is much simpler and combined with SSL still more secure than the Digest
authentication.

Conclusion
This’s it for this part of the HTTP series.

We’ve gone through different authentication mechanisms that HTTP offers by default and
talked about their advantages and disadvantages.

These concepts are hopefully not just the letters on the screen anymore, and the next time you
hear about them you will know precisely what they are and when to apply them.

You are also aware that there are security risks that haven’t been solved by these mechanisms
and that’s why the concepts like HTTPS and SSL/TLS exist. We talk more about security risks
and how to solve them in the next part of the series.

If you found some of the concepts in this part unclear, refer to the part 1, part 2, and part 3 of
the HTTP series.

If you reached this far | guess you liked the article ? Even if you didn’t, please do leave a
comment in the comments section below and let me know how you feel about it.

References

e The HTTP reference: https://code-maze.com/the-http-reference

e The HTTP series part 1: https://code-maze.com/http-series-part-1

e The HTTP series part 2: https://code-maze.com/http-series-part-2

e The HTTP series part 3: https://code-maze.com/http-series-part-3

e HTTP Authentication: Basic and Digest Access Authentication RFC:
https://www.ietf.org/rfc/rfc2617.txt

e HTTP: The Definitive Guide: http://shop.oreilly.com/product/9781565925090.do

e Man-in-the-middle attack:_https://en.wikipedia.org/wiki/Man-in-the-middle_attack

¢ Base64 encoding: https://en.wikipedia.org/wiki/Base64

37/50

https://code-maze.com/http-series-part-5/
https://code-maze.com/http-protocol-overview-part1/
https://code-maze.com/http-series-part-2/
https://code-maze.com/http-series-part-3/
https://code-maze.com/http-series/
https://code-maze.com/the-http-reference
https://code-maze.com/http-protocol-overview-part1/
https://code-maze.com/http-series-part-2/
https://code-maze.com/http-series-part-2/
https://www.ietf.org/rfc/rfc2617.txt
http://shop.oreilly.com/product/9781565925090.do
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Base64

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

The HTTP series (Part 5): Security

If you followed along the HTTP series, you are ready now to embark on a journey of HTTP
security. And a journey it will be, | promise ?

Many companies have been a victim to security breaches. To name just a few prominent ones:
Dropbox, Linkedin, MySpace, Adobe, Sony, Forbes and many others were on the receiving end
of malicious attacks. Many accounts were compromised and the chances are, at least one of
those was yours ?

You can actually check that on Have | Been Pwned.

My email address was found on 4 different websites that were victims of a security breach.

There are many aspects of the Web application security, too much to cover in one article, but
let’s start right from the beginning. Let’s learn how to secure our HTTP communication first.

This is what we have learned so far:

The HTTP series (Part 1): Overview of the basic concepts
The HTTP series (Part 2): Architectural aspects

The HTTP series (Part 3): Client identification

The HTTP series (Part 4): Authentication mechanisms
The HTTP series (Part 5): Security

The HTTP Reference

In this article, you will learn more about:

e Do you really need HTTPS?
e HTTPS fundamental concepts
o SSLVsSTLS
o TLS handshake
o Certificate and Certification Authorities
o Certificate chains
e HTTPS weaknesses

There is a lot to cover, so let’s go right into it.

Do you really need HTTPS?

You might be thinking: “Surely not all websites need to be protected and secured”. If a website
doesn't serve sensitive data or doesn’t have any form submissions, it would be overkill to buy
certificates and slow the website down, just to get the little green mark at the URL bar that says
“Secured”.

38/50

https://code-maze.com/http-series/
https://haveibeenpwned.com
https://code-maze.com/http-protocol-overview-part1/
https://code-maze.com/http-series-part-2/
https://code-maze.com/http-series-part-3/
https://code-maze.com/http-series-part-4/
https://code-maze.com/http-protocol-overview-part1/

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

If you own a website, you know it is crucial that it loads as fast as possible, so you try not to
burden it with unnecessary stuff.

Why would you willingly go through the painful process of migration to the HTTPS just to secure
the website that doesn’'t need to be protected in the first place? And on top of that, you even
need to pay for that privilege.

Let's see if it's worth the trouble.

HTTPS encrypts your messages and solves the MITM problem

In the previous part of the HTTP series | talked about different HTTP_authentication
mechanisms and their security flaws. The problem that both Basic and Digest authentication
cannot solve is the Man in the middle attack. Man in the middle represents any malicious
party that inserts itself between you and the website you are communicating with. Its goal is to
intercept the original messages both ways and hide its presence by forwarding the modified
messages.

CLIENT SERVER

A
(

MITM

Original participants of the communication might not be aware that their messages are being
listened to.

HTTPS solves the MITM attacks problem by encrypting the communication. Now, that doesn’t

39/50

https://code-maze.com/http-series/
https://code-maze.com/http-series-part-4/
https://code-maze.com/http-series-part-4/

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

mean that your traffic cannot be listened to anymore. It does mean that anyone that listens and
intercepts your messages, won'’t be able to see its content. To decrypt the message you need
the key. We will learn how that works exactly a bit later on.

Let's move on.

HTTPS as aranking signal

Not that recently, Google made HTTPS a ranking signal.

What does that mean?

It means that if you are a webmaster, and you care about your Google ranking, you should
definitely implement the HTTPS on your website. Although it's not as potent as some others
signals like quality content and backlinks, it definitely counts.

By doing this, Google gives incentive to webmasters to move to HTTPS as soon as possible
and improve the overall security of the internet.

It's completely free

To enable HTTPS (SSL/TLS) for a website you need a certificate issued by a Certificate
Authority. Until recently, certificates were costly and had to be renewed every year.

Thanks to the folks at Let's encrypt you can get very affordable certificates now ($0!). Seriously,
they are completely free.

Let’s encrypt certificates are easily installed, have a major companies support and a great
community of people. Take a look at the Major sponsors and see for yourself the list of
companies that support them. You might recognize a few ?

Let’s encrypt issues DV (domain validation) certificates only and have no plan of issuing
organizational (OV) or extended validation (EV) certificates. The certificate lasts for 90 days and
is easily renewed.

Like any other great technology, it has a down side too. Since certificates are easily available
now, they are being abused by Phishing websites.

It's all about the speed

Many people associate HTTPS with additional speed overhead. Take a quick look at the
httpvshttps.com.

Here are my results for the HTTP and HTTPS:

401750

https://webmasters.googleblog.com/2014/08/https-as-ranking-signal.html
https://letsencrypt.org/
https://www.bleepingcomputer.com/news/security/14-766-lets-encrypt-ssl-certificates-issued-to-paypal-phishing-sites/
http://httpvshttps.com

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

STTP @ HTTPS STTP @ HTTPS
10.177 s 1.688 s
619% slower than HTTPS 849% faster than HTTP

So what happened there? Why is HTTPS so much faster? How is that possible?
HTTPS is the requirement for using the HTTP 2.0 protocol.

If we look at the network tab, we will see that in the HTTPS case, the images were loaded over
h2 protocol. And the waterfall looks very different too.

The HTTP 2.0 is the successor of the currently prevalent HTTP/1.1.
It has many advantages over HTTP/1.1:

e |t's binary, instead of textual

e |t's fully multiplexed, which means it can send multiple requests in parallel over a single
TCP connection

¢ Reduces overhead by using HPACK compression

¢ |t uses the new ALPN extension which allows for faster-encrypted connections

e |t reduces additional round trip times (RTT), making your website load faster

¢ Many others

You will be frowned upon by browsers
If you are not convinced by now, you should probably know, that some browsers started waging
war against unencrypted content. Google has published a blog last September that clearly

explains how will Chrome treat insecure websites.

Here is how it looked before and after Chrome version 56.

411750

https://www.keycdn.com/support/alpn/
https://security.googleblog.com/2016/09/moving-towards-more-secure-web.html

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

Treatment of HTTP pages with
password or credit card form fields:

Current (Chrome 53) @ login.example.com

Jan. 2017 (Chrome 56) (® Not secure login.example.com

And here is how it will look eventually.

Eventual treatment of all
HTTP pages in Chrome:

A Not secure example.com

Are you convinced yet? ?

Moving to HTTPS is complicated

This is also the relic of the past times. While moving to HTTPS might be harder for the websites
that exist for a long time because of the sheer amount of resources uploaded to over HTTP, the

hosting providers are generally trying to make this process easier.

Many hosting providers offer automatic migration to HTTPS. It can be as easy as clicking one
button in the options panel.

If you plan to setup your website over HTTPS, check if the hosting provider offers HTTPS
migration first. Or if it has shell access, so you can do it yourself easily with let's encrypt and a
bit of server configuration.

So, these are the reasons to move to HTTPS. Any reason not to?

Hopefully, by now, | convinced you of the HTTPS value and you passionately want to move

42150

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

your website to HTTPS and understand how it works.

HTTPS fundamental concepts

HTTPS stands for Hypertext Transfer Protocol Secure. This effectively means that client and
server communicate through HTTP but over the secure SSL/TLS connection.

In the previous parts of the series, we've learned how HTTP communication works, but what
does the SSL/TLS part stand for and why do | use both SSL and TLS?

Let's start with that.

SSL vs TLS

Terms SSL (Secure Socket Layer) and TLS (Transport Layer Security) are used
interchangeably, but in fact, today, when someone mentions SSL they probably mean TLS.

SSL was originally developed by Netscape but version 1.0 never saw the light of the day.
Version 2.0 was introduced in 1995 and version 3.0 in 1996, and they were used for a long time
after that (at least what is considered long in IT), even though their successor TLS already
started taking traction. Up until 2014. fallback from TLS to SSL was supported by servers, and
that was the main reason the POODLE attack was so successful.

After that, the fallback to SSL was completely disabled.

If you check yours or any other website with Qualys SSL Labs tool, you will probably see
something like this:

Protocols

TLS 1.3 No
TLS 1.2 Yes
TLS 1. es
TLS 1.0 es
SL 3 No
SL No

As you can see, SSL 2 and 3 are not supported at all, and TLS 1.3 hasn't still taken off.

But, because SSL was so prevalent for so long, it became a term that most people are familiar
with and now it's used for pretty much anything. So when you hear someone using SSL instead
of TLS it is just for historical reasons, not because they really mean SSL.

Now that we got that out of the way, | will use TLS from now on since it's more appropriate.

431750

https://code-maze.com/http-series/
https://en.wikipedia.org/wiki/POODLE
https://www.ssllabs.com/ssltest/

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

So, how do client and server establish a secure connection?
TLS handshake

Before the real, encrypted communication between the client and server starts, they perform
what is called the “TLS handshake”.

Here is how it works (very simplified, additional links below).

Client Hello

|

Server Hello
CLIENT SERVER

Client key exchange

|

|

Server finished

|

Encrypted communication

The encrypted communication starts after the connection is established.

The actual mechanism is much complicated than this, but to implement the HTTPS, you don’t
need to know all the actual details of the handshake implementation.

What you need to know is that there is an initial handshake between the client and the server, in
which they exchange keys and certificates. After that handshake, encrypted communication is
ready to start.

If you want to know exactly how it works, you can look it up in the REC 2246.

In the TLS handshake image, certificates are being sent, so let's see what a certificate
represents and how it's being issued.

44150

https://www.ietf.org/rfc/rfc2246.txt

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

Certificate and Certification Authorities (CAS)

Certificates are the crucial part of the secure communication over HTTPS. They are issued by
one of the trusted Certification Authorities.

A digital certificate allows the users of the website to communicate in the secure fashion when
using a website.

For example, the certificate you are using when browsing through my blog looks like this:

General | Details | Certification Path |

ﬁ Certificate Information

This certificate is intended for the following purpose(s):

» Ensures the identity of a remote computer
* Proyes your identity to a remote computer

#2,23.140.1.2.1

*Refer to the certification authority's statement for details.

Issued to: code-maze.com

Issued by: UbiquiTLS™ DV RSA Server CA

valid from &/ 22/ 2017 to 9/ 21/ 2017

[Issuer Statement]

Learn more about certificates

If you are using Chrome, for example, you can inspect certificates yourself by going to the
Security tab in Developer Tools (F12).

| would like to point out two things. In the first red box, you can see what the real purpose of the
certificate is. It just ensures that you are talking to the right website. If someone was to for
example impersonate the website you think you are communicating with, you would certainly
get notified by your browser.

That would not prevent malicious attackers to steal your credentials if they have a legitimate

45750

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

domain with a legitimate certificate. So be careful. Green “Secure” in the top left just means
that you are communicating with the right website. It doesn’t say anything about the
honesty of that website’s owner ?

Extended validation certificates, on the other hand, prove that the legal entity is controlling the
website. There is an ongoing debate whether EV certs are all that useful to the typical user of

the internet. You can recognize them by the custom text left of your URL bar. For example,
when you browse twitter.com you can see:

@ Twitter, Inc. [US] | https://twitter.com

That means they are using EV certificate to prove that their company stands behind that
website.

Certificate chains

So why would your browser trust the certificate that server sends back? Any server can send a
piece of digital documentation and claim it is what you want it to be.

That's where root certificates come in. Typically certificates are chained and the root certificate
is one your machine implicitly trusts.

For my blog it looks like this:

Certification path

B} The USERTrust Metwork™ ROOT CERTIFICATE
[{2 COMODO RSA Certification Autharity Intermediate
--[5] UbiquiTLS™ DV RSA Server CA certificates
| -] code-maze.com End user
View Certificate

Lowest one is my domain certificate, which is signed by the certificate above it and so on... Until
the root certificate is reached.

But who signs the root certificate you might wonder?

461750

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

Well, it signs itself ?

?; Certificate Information

This certificate is intended for the following purpose(s):

* Ensures the identity of a remote computer -
» Praves your identity to a remote computer

*» Protects e-mail messages

* Ensures software came from software publisher

» Protects software from alteration after publication
» Allows data to be signed with the current time

m

Issued to: AddTrust External CA Root
Issued by: AddTrust External CA Root

Valid from 5/ 30/ 2000 to 5/ 30/ 2020

Issued to: AddTrust External CA Root, Issued by: AddTrust External CA Root.

And your machine and your browsers have a list of trusted root certificates which they rely upon
to ensure the domain you are browsing is trusted. If the certificate chain is broken for some
reason (happened to me because | enabled CDN for my blog), your site will be displayed as
insecure on some machines.

You can check the list of trusted root certificates on Windows by running the certificate manager
by pressing windows button + R and typing certmgr.msc. You can then find machine trusted
certificates in the Trusted Root Certification Authorities section. This list is used by Windows, IE,
and Chrome. Firefox, on the other hand, manages its own list.

By exchanging certificate, client and server know that they are talking to the right party and can
begin encrypted message transfer.

HTTPS weaknesses

HTTPS can provide a false sense of security if site backend is not properly implemented.
There are a plethora of different ways to extract customer information, and many sites are
leaking data even if they are using HTTPS. There are many other mechanisms besides MITM to
get sensitive information from the website.

Another potential problem that the websites can have HTTP links even though they run over
HTTPS. This can be a chance for MITM attack. While migrating websites to HTTPS, this might
get by unnoticed.

47150

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

And here is another one as a bonus: login forms accessed through an insecure page could
potentially be at risk even though they are loaded on a secure page. So it's best to keep entire
website secure to avoid this one.

Conclusion

That wraps up entire HTTP series. | hope you got something useful out of it and understood
some concepts you didn’t or couldn’t before.

| know I had fun writing it and learned a bunch of new things in the process. Hopefully, it was as
much fun reading (or at least close). ?

Feel free to let me know what you think about this article or the series in the comments section.
Also, share the love with some friends or colleagues that could find it useful!

References

The HTTP series: https://code-maze.com/http-series/

Check if your browser supports HTTP 2.0 : http://caniuse.com/#search=http2
More about HTTP 2.0 : https://bagder.gitbooks.io/http2-explained/content/en/
¢ Migrating your website to HTTPS: https://www.keycdn.com/blog/http-to-https/

The TLS protocol: https://www.ietf.org/rfc/rfc2246.txt
POODLE attack: https://en.wikipedia.org/wiki/POODLE

481750

https://code-maze.com/http-series/
https://code-maze.com/http-series/
http://caniuse.com/#search=http2
https://bagder.gitbooks.io/http2-explained/content/en/
https://www.keycdn.com/blog/http-to-https/
https://www.ietf.org/rfc/rfc2246.txt
https://en.wikipedia.org/wiki/POODLE

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

The HTTP Reference

This article contains all the reference for my HTTP series. This reference could be helpful if you
need to quickly find what some HTTP status code means. It is also some kind of cheat sheet for
myself because there is a lot of information to remember by heart. So | hope it is helpful to you
too.

You can find the reference to the HTTP:

Request Methods
Status Codes
Headers

MIME Types

Request Methods

List of HTTP Request methods (verbs).

Request methods

[table id=10/]

Status Codes

These two tables define status code ranges (classification) and describe all the status codes.
Status Code Classification

[table id=1 /]

Status Codes

[table id=2 /]

Reference: https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Headers

Both HTTP request and HTTP response can contain header fields. These two tables describe
those fields and provide simple examples.

Request headers

[table id=3 /]

491750

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Code Maze
A practical programmer's resource. - https://code-maze.com <img src="https://code-maze.com/wp-
content/uploads/2017/11/Logo-1.png" alt="Code Maze" id="logo">

Response headers
[table id=4 /]
Reference: https://www.w3.org/Protocols/rfc2616/rfc2616-secl14.html

MIME types

Because of the sheer quantity of Internet Media Types, just the most commonly used ones are
listed here.

Common primary MIME types
[table id=8 /]

Common application MIME types
[table id=5 /]

Common multipart MIME types
[table id=6 /]

Common text MIME types

[table id=7 /]

References: https://www.iana.org/assignments/media-types/media-types.xhtml

Everything mentioned in this reference article can be found in more detail in the HTTP1.1 spec
document:
http://www.ietf.org/rfc/rfc2616.txt

50/50

https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
https://www.iana.org/assignments/media-types/media-types.xhtml
http://www.ietf.org/rfc/rfc2616.txt
http://www.tcpdf.org

	INDEX
	The HTTP series (Part 1): Overview of the basic concepts
	The HTTP series (Part 2): Architectural aspects
	The HTTP series (Part 3): Client identification
	The HTTP series (Part 4): Authentication mechanisms
	The HTTP series (Part 5): Security
	The HTTP Reference

