

260

In this section, we are going to learn about caching resources. Caching

can improve the quality and performance of our app a lot, but again, it is

something first we need to look at as soon as some bug appears. To cover

resource caching, we are going to work with HTTP Cache. Additionally, we

are going to talk about cache expiration, validation, and cache-control

headers.

We want to use cache in our app because it can significantly improve

performance. Otherwise, it would be useless. The main goal of caching is

to eliminate the need to send requests towards the API in many cases and

also to send full responses in other cases.

To reduce the number of sent requests, caching uses the expiration

mechanism, which helps reduce network round trips. Furthermore, to

eliminate the need to send full responses, the cache uses the validation

mechanism, which reduces network bandwidth. We can now see why

these two are so important when caching resources.

The cache is a separate component that accepts requests from the API’s

consumer. It also accepts the response from the API and stores that

response if they are cacheable. Once the response is stored, if a

consumer requests the same response again, the response from the

cache should be served.

But the cache behaves differently depending on what cache type is used.

25.1.1 Cache Types

There are three types of caches: Client Cache, Gateway Cache, and Proxy

Cache.

261

The client cache lives on the client (browser); thus, it is a private cache.

It is private because it is related to a single client. So every client

consuming our API has a private cache.

The gateway cache lives on the server and is a shared cache. This cache

is shared because the resources it caches are shared over different

clients.

The proxy cache is also a shared cache, but it doesn’t live on the server

nor the client side. It lives on the network.

With the private cache, if five clients request the same response for the

first time, every response will be served from the API and not from the

cache. But if they request the same response again, that response should

come from the cache (if it’s not expired). This is not the case with the

shared cache. The response from the first client is going to be cached,

and then the other four clients will receive the cached response if they

request it.

25.1.2 Response Cache Attribute

So, to cache some resources, we have to know whether or not it’s

cacheable. The response header helps us with that. The one that is used

most often is Cache-Control: Cache-Control: max-age=180. This states

that the response should be cached for 180 seconds. For that, we use the

ResponseCache attribute. But of course, this is just a header. If we want

to cache something, we need a cache-store. For our example, we are

going to use Response caching middleware provided by ASP.NET Core.

Before we start, let’s open Postman and modify the settings to support

caching:

262

In the General tab under Headers, we are going to turn off the Send no-

cache header:

Great. We can move on.

Let’s assume we want to use the ResponseCache attribute to cache the

result from the GetCompany action:

It is obvious that we can work with different properties in the

ResponseCache attribute — but for now, we are going to use Duration

only:

[HttpGet("{id}", Name = "CompanyById")]
[ResponseCache(Duration = 60)]
public async Task<IActionResult> GetCompany(Guid id)

And that is it. We can inspect our result now:

263

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

You can see that the Cache-Control header was created with a public

cache and a duration of 60 seconds. But as we said, this is just a header;

we need a cache-store to cache the response. So, let’s add one.

The first thing we are going to do is add an extension method in the

ServiceExtensions class:

public static void ConfigureResponseCaching(this IServiceCollection services) =>

services.AddResponseCaching();

We register response caching in the IOC container, and now we have to

call this method in the Program class:

builder.Services.ConfigureResponseCaching();

Additionally, we have to add caching to the application middleware right

below UseCors() because Microsoft recommends having UseCors before

UseResponseCaching, and as we learned in the section 1.8, order is very

important for the middleware execution:

app.UseCors("CorsPolicy");
app.UseResponseCaching();

Now, we can start our application and send the same GetCompany

request. It will generate the Cache-Control header. After that, before 60

264

seconds pass, we are going to send the same request and inspect the

headers:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

You can see the additional Age header that indicates the number of

seconds the object has been stored in the cache. Basically, it means that

we received our second response from the cache-store.

Another way to confirm that is to wait 60 seconds to pass. After that, you

can send the request and inspect the console. You will see the SQL query

generated. But if you send a second request, you will find no new logs for

the SQL query. That’s because we are receiving our response from the

cache.

Additionally, with every subsequent request within 60 seconds, the Age

property will increment. After the expiration period passes, the response

will be sent from the API, cached again, and the Age header will not be

generated. You will also see new logs in the console.

Furthermore, we can use cache profiles to apply the same rules to

different resources. If you look at the picture that shows all the properties

we can use with ResponseCacheAttribute, you can see that there are a

lot of properties. Configuring all of them on top of the action or controller

265

could lead to less readable code. Therefore, we can use CacheProfiles

to extract that configuration.

To do that, we are going to modify the AddControllers method:

builder.Services.AddControllers(config =>
{
 config.RespectBrowserAcceptHeader = true;
 config.ReturnHttpNotAcceptable = true;
 config.InputFormatters.Insert(0, GetJsonPatchInputFormatter());
 config.CacheProfiles.Add("120SecondsDuration", new CacheProfile { Duration =
120 });
})...

We only set up Duration, but you can add additional properties as well.

Now, let’s implement this profile on top of the Companies controller:

[Route("api/companies")]
[ApiController]
[ResponseCache(CacheProfileName = "120SecondsDuration")]

We have to mention that this cache rule will apply to all the actions inside

the controller except the ones that already have the ResponseCache

attribute applied.

That said, once we send the request to GetCompany, we will still have the

maximum age of 60. But once we send the request to GetCompanies:

https://localhost:5001/api/companies

There you go. Now, let’s talk about new Output caching introduced in

.NET 7.

266

Output caching is a mechanism for storing the output of a client's request

and serving the stored result on future requests. This significantly

improves an application's responsiveness by providing a faster response

to client requests and saving on repeated processing of the same output.

Caching is not a new concept in ASP.NET Core as we already have

response caching features. But this newly designed Output Caching API

(introduced in .NET 7) opens up a new horizon of possibilities with

caching.

25.4.1 Differences Between Output and Response Caching

So why the need for another caching mechanism when one already

exists? The answer lies in the limitations of Response Caching and the

ever-increasing demand for a newer caching API to tackle newer

challenges. Response Caching works through a set of standard HTTP

cache headers where both client and server play their roles. The

server application emits responses with appropriate headers according to

cache configurations, and the client conforms to those headers to

fetch the cached response. The client however can bypass the caching by

using a no-cache header.

Output Caching is a different beast. Instead of using cache headers from

client requests, the caching decision is solely made by the server

application. The client is not supposed to know whether it's receiving a

cached response. On one side, this new API means leaning toward a more

practical approach. On the other side, this comes with some advanced

capabilities. For example, we can configure resource locking - a true

solution to prevent cache stampedes and thundering herds. Other

features include:

 Support for custom caching stores like Redis

 Caching of cookies and headers

267

 Caching authenticated content

 Tagging of cache contents and invalidating as a group

 Purging cache

 Delayed caching

 Partial caching or donut caching

By default, output caching follows these rules:

 Only HTTP 200 responses are cached.

 Only HTTP GET or HEAD requests are cached.

 Responses that set cookies aren't cached.

 Responses to authenticated requests aren't cached.

Before we start with the examples, let's comment out all the response

caching attributes in the CompaniesController and the line in the

Program class where we configure CacheProfiles for the response

caching.

After we do that, we are ready to use the output caching examples.

To register the output caching with stores in our app, we have to modify

the ConfigureResponseCaching method in the ServiceExtensions

class:

public static void ConfigureOutputCaching(this IServiceCollection services) =>

services.AddOutputCache();

Here, we modify the name of the method and then use the

AddOutputCache method to register the output caching mechanism.

Next, we have to modify the call to this configure method in the Program

class:

builder.Services.ConfigureOutputCaching();

268

And also call the UseOutputCache bellow the UseCors method to add the

middleware for caching:

//app.UseResponseCaching();
app.UseOutputCache();

That said, let's do the same thing as we did with the ResponseCache

attribute using the GetCompany action:

[HttpGet("{id:guid}", Name = "CompanyById")]
//[ResponseCache(Duration = 60)]
[OutputCache(Duration = 60)]
public async Task<IActionResult> GetCompany(Guid id)
{
 ...
}

The OutputCache attribute contains the properties that ResponseCache

has, so we can use the Duration property this time as well.

Now, if we send the same GetCompany request from Postman, we will

find a bit different headers:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

We don’t have the Cache-Control header here anymore. That’s because

the server doesn’t have to inform the client about the max-age directive

of the response.

But, if we send the same request before 60 seconds pass, we will see the

Age header for sure:

269

25.5.1 Using Policies With Output Caching

In a response caching section, we've used the profiles to set a profile and

use it with the ResponseCache attribute. We can do the same with output

caching, just this time, we have to use policies.

To use the policies, we have to modify the AddOutputCache method:

public static void ConfigureOutputCaching(this IServiceCollection services) =>
 services.AddOutputCache(opt =>
 {
 opt.AddBasePolicy(bp => bp.Expire(TimeSpan.FromSeconds(10)));
 });

By using the AddBasePolicy method, we apply this base policy to all the

endpoints in our controllers. We can confirm that.

Currently, we are not using any caching attribute with the GetCompanies

action. But, if we send a request to that endpoint, and then another

before 10 seconds pass, we will see the Age header:

https://localhost:5001/api/companies

270

Of course, after 10 seconds, our app will fetch a new result from the

database.

On the other hand, if we send requests to the GetCompany endpoint,

which already has the OutputCache attribute applied, we will see that the

base policy doesn’t affect it:

The value of the Age header is higher than 10, which means that using

attributes override the base policy we just configured.

Besides the base policies, we can configure the named policies, which we

have to apply to specific endpoints.

To do that, we can use the AddPolicy method:

public static void ConfigureOutputCaching(this IServiceCollection services) =>
 services.AddOutputCache(opt =>
 {
 //opt.AddBasePolicy(bp => bp.Expire(TimeSpan.FromSeconds(10)));
 opt.AddPolicy("120SecondsDuration", p => p.Expire(TimeSpan.FromSeconds(120)));
 });

Now, we can apply it to the controller or any specific action:

[Route("api/companies")]
[ApiController]
//[ResponseCache(CacheProfileName = "120SecondsDuration")]
[OutputCache(PolicyName = "120SecondsDuration")]
public class CompaniesController : ControllerBase

271

Even though we applied this policy to the entire controller, the

GetCompany action will be cached for 60 seconds while other GET actions

will be cached for 120 seconds.

25.5.2 Output Cache Keys

To show different keys that we can use with output caching, we are not

going to modify our existing app but rather show some dummy examples

so you could see how those keys are applied. They are pretty easy to use.

If, for example, we have created a base caching policy but don't want to

use caching mechanism on certain actions, we can use the NoStore

property of the OutputCache attribute:

[HttpGet("output-nocache")]
[OutputCache(NoStore = true)]
public IActionResult NonCachedOutput()
{
 return Ok($"Output was generated at {DateTime.Now}");
}

We can also use different “Vary” keys with output caching.

For example, we can enable cache mechanism for the query string

parameter by using the VaryByQueryKeys property:

[HttpGet("output-varybykey")]
[OutputCache(VaryByQueryKeys = new[] { nameof(firstKey) })]
public IActionResult VaryByKey(string firstKey, string secondKey)
{
 return Ok($"{firstKey} {secondKey} - retrieved at {DateTime.Now}");
}

Here, we cache our response only based on the firstKey parameter.

This means that we can change the second key as much as we want, and

the response will be cached (for 60 seconds as this is a default period for

caching - we didn't provide the Duration property). But, as soon as we

change the firstKey value, our response will be generated again and

then cached.

Of course, if we want to add Duration as well, we can do that inside the

OutputCache attribute:

272

[HttpGet("output-varybykey")]
[OutputCache(VaryByQueryKeys = new[] { nameof(firstKey) }, Duration = 10)]
public IActionResult VaryByKey(string firstKey, string secondKey)

But, a much better way would be to create a policy with multiple rules:

services.AddOutputCache(opt =>
{
 opt.AddPolicy("QueryParamDuration", p =>
 p.Expire(TimeSpan.FromSeconds(10))
 .SetVaryByQuery("firstKey"));
});

And then use this policy:

[HttpGet("output-varybykey")]
[OutputCache(PolicyName = "QueryParamDuration")]
public IActionResult VaryByKey(string firstKey, string secondKey)

We should also be aware that next to this “vary” key, we have some

additional ones that we can use similarly to the previous one:

25.5.3 Caching Revalidation

Cache revalidation means the server can return a 304 Not

Modified HTTP status code instead of the full response body. With that

status code our server informs the client that the response to the request

is unchanged from what the client previously received.

To see this in action, we can slightly modify the GetCompany action:

[HttpGet("{id:guid}", Name = "CompanyById")]
//[ResponseCache(Duration = 60)]
[OutputCache(Duration = 60)]
public async Task<IActionResult> GetCompany(Guid id)
{
 var company = await _service.CompanyService.GetCompanyAsync(id, trackChanges:
false);

 var etag = $"\"{Guid.NewGuid():n}\"";
 HttpContext.Response.Headers.ETag = etag;

 return Ok(company);
}

273

As soon as request arrives, the server creates an etag value and adds it

to the ETag header.

Now, if we send a request to this endpoint, we will see a new header

value:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

If we send another one before 60 seconds expire, we will find the same

ETag value and the Age header as well. Also, pay attention that the status

code of the response is 200 OK.

Now, as soon as we send another request to the same endpoint, but this

time with the If-None-Match header with the same value as Etag’s, we

will see a different status code:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

274

We get this status code because the resource we are fetching is the same.

Now, if we send a PUT request to update that company:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

And then, while caching session is still active (no more than 60 seconds

passed) we send another GET request with the same If-None-Match

value:

275

We can see that we get 200 OK response and not 304 because our

company is modified now.

Also, the ETag’s value in the response is different:

There are a lot more functionalities that output caching provides for us,

but those we covered here should give you a good understanding of how

output caching works and how to use it.

	25 Caching
	25.1 About Caching
	25.1.1 Cache Types
	25.1.2 Response Cache Attribute

	25.2 Adding Cache Headers
	25.3 Adding Cache-Store
	25.4 Output Caching
	25.4.1 Differences Between Output and Response Caching

	25.5 Using Output Caching In Our App
	25.5.1 Using Policies With Output Caching
	25.5.2 Output Cache Keys
	25.5.3 Caching Revalidation

