

181

We have covered a lot of interesting features while creating our Web API

project, but there are still things to do.

So, in this chapter, we’re going to learn how to implement paging in

ASP.NET Core Web API. It is one of the most important concepts in

building RESTful APIs.

If we inspect the GetEmployeesForCompany action in the

EmployeesController, we can see that we return all the employees for

the single company.

But we don’t want to return a collection of all resources when querying

our API. That can cause performance issues and it’s in no way optimized

for public or private APIs. It can cause massive slowdowns and even

application crashes in severe cases.

Of course, we should learn a little more about Paging before we dive into

code implementation.

Paging refers to getting partial results from an API. Imagine having

millions of results in the database and having your application try to

return all of them at once.

Not only would that be an extremely ineffective way of returning the

results, but it could also possibly have devastating effects on the

application itself or the hardware it runs on. Moreover, every client

has limited memory resources and it needs to restrict the number of

shown results.

Thus, we need a way to return a set number of results to the client in

order to avoid these consequences. Let’s see how we can do that.

182

Mind you, we don’t want to change the base repository logic or implement

any business logic in the controller.

What we want to achieve is something like this:

https://localhost:5001/api/companies/companyId/employees?pa

geNumber=2&pageSize=2. This should return the second set of two

employees we have in our database.

We also want to constrain our API not to return all the employees even if

someone calls

https://localhost:5001/api/companies/companyId/employees.

Let's start with the controller modification by modifying the

GetEmployeesForCompany action:

[HttpGet]
public async Task<IActionResult> GetEmployeesForCompany(Guid companyId,
 [FromQuery] EmployeeParameters employeeParameters)
{
 var employees = await _service.EmployeeService.GetEmployeesAsync(companyId,
trackChanges: false);
 return Ok(employees);
}

A few things to take note of here:

 We’re using [FromQuery] to point out that we’ll be using query

parameters to define which page and how many employees we are

requesting.

 The EmployeeParameters class is the container for the actual

parameters for the Employee entity.

We also need to actually create the EmployeeParameters class. So, let’s

first create a RequestFeatures folder in the Shared project and then

inside, create the required classes.

First the RequestParameters class:

public abstract class RequestParameters

183

{
 const int maxPageSize = 50;
 public int PageNumber { get; set; } = 1;

 private int _pageSize = 10;
 public int PageSize
 {
 get
 {
 return _pageSize;
 }
 set
 {
 _pageSize = (value > maxPageSize) ? maxPageSize : value;
 }
 }

And then the EmployeeParameters class:

public class EmployeeParameters : RequestParameters
{
}

We create an abstract class to hold the common properties for all the

entities in our project, and a single EmployeeParameters class that will

hold the specific parameters. It is empty now, but soon it won’t be.

In the abstract class, we are using the maxPageSize constant to restrict

our API to a maximum of 50 rows per page. We have two public

properties – PageNumber and PageSize. If not set by the caller,

PageNumber will be set to 1, and PageSize to 10.

Now we can return to the controller and import a using directive for the

EmployeeParameters class:

using Shared.RequestFeatures;

After that change, let’s implement the most important part — the

repository logic. We need to modify the GetEmployeesAsync method in

the IEmployeeRepository interface and

the EmployeeRepository class.

So, first the interface modification:

public interface IEmployeeRepository
{
 Task<IEnumerable<Employee>> GetEmployeesAsync(Guid companyId,

184

 EmployeeParameters employeeParameters, bool trackChanges);
 Task<Employee> GetEmployeeAsync(Guid companyId, Guid id, bool trackChanges);
 void CreateEmployeeForCompany(Guid companyId, Employee employee);
 void DeleteEmployee(Employee employee);
}

As Visual Studio suggests, we have to add the reference to the Shared

project.

After that, let’s modify the repository logic:

public async Task<IEnumerable<Employee>> GetEmployeesAsync(Guid companyId,
 EmployeeParameters employeeParameters, bool trackChanges) =>
 await FindByCondition(e => e.CompanyId.Equals(companyId), trackChanges)
 .OrderBy(e => e.Name)
 .Skip((employeeParameters.PageNumber - 1) * employeeParameters.PageSize)
 .Take(employeeParameters.PageSize)
 .ToListAsync();

Okay, the easiest way to explain this is by example.

Say we need to get the results for the third page of our website, counting

20 as the number of results we want. That would mean we want to skip

the first ((3 – 1) * 20) = 40 results, then take the next 20 and return

them to the caller.

Does that make sense?

Since we call this repository method in our service layer, we have to

modify it as well.

So, let’s start with the IEmployeeService modification:

public interface IEmployeeService
{
 Task<IEnumerable<EmployeeDto>> GetEmployeesAsync(Guid companyId,
 EmployeeParameters employeeParameters, bool trackChanges);
 ...
}

In this interface, we only have to modify the GetEmployeesAsync

method by adding a new parameter.

After that, let’s modify the EmployeeService class:

public async Task<IEnumerable<EmployeeDto>> GetEmployeesAsync(Guid companyId,
 EmployeeParameters employeeParameters, bool trackChanges)
{

185

 await CheckIfCompanyExists(companyId, trackChanges);

 var employeesFromDb = await _repository.Employee
 .GetEmployeesAsync(companyId, employeeParameters, trackChanges);
 var employeesDto = _mapper.Map<IEnumerable<EmployeeDto>>(employeesFromDb);

 return employeesDto;
}

Nothing too complicated here. We just accept an additional parameter

and pass it to the repository method.

Finally, we have to modify the GetEmployeesForCompany action and fix

that error by adding another argument to the GetEmployeesAsync

method call:

[HttpGet]
public async Task<IActionResult> GetEmployeesForCompany(Guid companyId,
 [FromQuery] EmployeeParameters employeeParameters)
{
 var employees = await _service.EmployeeService.GetEmployeesAsync(companyId,
 employeeParameters, trackChanges: false);

 return Ok(employees);
}

Before we continue, we should create additional employees for the

company with the id: C9D4C053-49B6-410C-BC78-2D54A9991870. We

are doing this because we have only a small number of employees per

company and we need more of them for our example. You can use a

predefined request in Part16 in Postman, and just change the request

body with the following objects:

{

 "name": "Mihael Worth",

 "age": 30,

 "position": "Marketing expert"

}

{

 "name": "John Spike",

 "age": 32,

 "position": "Marketing expert

II"

}

{

 "name": "Nina Hawk",

 "age": 26,

 "position": "Marketing expert

II"

}

{

 "name": "Mihael Fins",

 "age": 30,

 "position": "Marketing expert"

{

 "name": "Martha Grown",

 "age": 35,

{

 "name": "Kirk Metha",

 "age": 30,

 "position": "Marketing expert"

186

} "position": "Marketing expert

II"

}

}

Now we should have eight employees for this company, and we can try a

request like this:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-

BC78-2D54A9991870/employees?pageNumber=2&pageSize=2

So, we request page two with two employees:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-
2D54A9991870/employees?pageNumber=2&pageSize=2

If that’s what you got, you’re on the right track.

We can check our result in the database:

And we can see that we have the correct data returned.

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees?pageNumber=2&pageSize=2
https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees?pageNumber=2&pageSize=2

187

Now, what can we do to improve this solution?

Since we’re returning just a subset of results to the caller, we might as

well have a PagedList instead of List.

PagedList will inherit from the List class and will add some more to it.

We can also move the skip/take logic to the PagedList since it makes

more sense.

So, let’s first create a new MetaData class in the

Shared/RequestFeatures folder:

public class MetaData
{
 public int CurrentPage { get; set; }
 public int TotalPages { get; set; }
 public int PageSize { get; set; }
 public int TotalCount { get; set; }

 public bool HasPrevious => CurrentPage > 1;
 public bool HasNext => CurrentPage < TotalPages;
}

Then, we are going to implement the PagedList class in the same

folder:

public class PagedList<T> : List<T>
{
 public MetaData MetaData { get; set; }

 public PagedList(List<T> items, int count, int pageNumber, int pageSize)
 {
 MetaData = new MetaData
 {
 TotalCount = count,
 PageSize = pageSize,
 CurrentPage = pageNumber,
 TotalPages = (int)Math.Ceiling(count / (double)pageSize)
 };

 AddRange(items);
 }

 public static PagedList<T> ToPagedList(IEnumerable<T> source, int pageNumber, int
pageSize)
 {
 var count = source.Count();
 var items = source

188

 .Skip((pageNumber - 1) * pageSize)
 .Take(pageSize).ToList();

 return new PagedList<T>(items, count, pageNumber, pageSize);
 }
}

As you can see, we’ve transferred the skip/take logic to the static method

inside of the PagedList class. And in the MetaData class, we’ve added a

few more properties that will come in handy as metadata for our

response.

HasPrevious is true if the CurrentPage is larger than 1, and HasNext is

calculated if the CurrentPage is smaller than the number of total pages.

TotalPages is calculated by dividing the number of items by the page

size and then rounding it to the larger number since a page needs to exist

even if there is only one item on it.

Now that we’ve cleared that up, let’s change our EmployeeRepository

and EmployeesController accordingly.

Let’s start with the interface modification:

Task<PagedList<Employee>> GetEmployeesAsync(Guid companyId,
 EmployeeParameters employeeParameters, bool trackChanges);

Then, let’s change the repository class:

public async Task<PagedList<Employee>> GetEmployeesAsync(Guid companyId,
 EmployeeParameters employeeParameters, bool trackChanges)
{
 var employees = await FindByCondition(e => e.CompanyId.Equals(companyId),
trackChanges)
 .OrderBy(e => e.Name)
 .ToListAsync();

 return PagedList<Employee>
 .ToPagedList(employees, employeeParameters.PageNumber,
employeeParameters.PageSize);
}

After that, we are going to modify the IEmplyeeService interface:

Task<(IEnumerable<EmployeeDto> employees, MetaData metaData)> GetEmployeesAsync(Guid
companyId, EmployeeParameters employeeParameters, bool trackChanges);

Now our method returns a Tuple containing two fields – employees and

metadata.

