

31

In this chapter, we are going to talk about the Onion architecture, its

layers, and the advantages of using it. We will learn how to create

different layers in our application to separate the different application

parts and improve the application's maintainability and testability.

That said, we are going to create a database model and transfer it to the

MSSQL database by using the code first approach. So, we are going to

learn how to create entities (model classes), how to work with the

DbContext class, and how to use migrations to transfer our created

database model to the real database. Of course, it is not enough to just

create a database model and transfer it to the database. We need to use

it as well, and for that, we will create a Repository pattern as a data

access layer.

With the Repository pattern, we create an abstraction layer between the

data access and the business logic layer of an application. By using it, we

are promoting a more loosely coupled approach to access our data in the

database.

Also, our code becomes cleaner, easier to maintain, and reusable. Data

access logic is stored in a separate class, or sets of classes called a

repository, with the responsibility of persisting the application’s business

model.

Additionally, we are going to create a Service layer to extract all the

business logic from our controllers, thus making the presentation layer

and the controllers clean and easy to maintain.

So, let’s start with the Onion architecture explanation.

32

The Onion architecture is a form of layered architecture and we can

visualize these layers as concentric circles. Hence the name Onion

architecture. The Onion architecture was first introduced by Jeffrey

Palermo, to overcome the issues of the traditional N-layered architecture

approach.

There are multiple ways that we can split the onion, but we are going to

choose the following approach where we are going to split the

architecture into 4 layers:

 Domain Layer

 Service Layer

 Infrastructure Layer

 Presentation Layer

Conceptually, we can consider that the Infrastructure and Presentation

layers are on the same level of the hierarchy.

Now, let us go ahead and look at each layer with more detail to see why

we are introducing it and what we are going to create inside of that layer:

We can see all the different layers that we are going to build in our

project.

33

3.1.1 Advantages of the Onion Architecture

Let us take a look at what are the advantages of Onion architecture, and

why we would want to implement it in our projects.

All of the layers interact with each other strictly through the interfaces

defined in the layers below. The flow of dependencies is towards the core

of the Onion. We will explain why this is important in the next section.

Using dependency inversion throughout the project, depending on

abstractions (interfaces) and not the implementations, allows us to switch

out the implementation at runtime transparently. We are depending on

abstractions at compile-time, which gives us strict contracts to work with,

and we are being provided with the implementation at runtime.

Testability is very high with the Onion architecture because everything

depends on abstractions. The abstractions can be easily mocked with a

mocking library such as Moq. We can write business logic without concern

about any of the implementation details. If we need anything from an

external system or service, we can just create an interface for it and

consume it. We do not have to worry about how it will be implemented.

The higher layers of the Onion will take care of implementing that

interface transparently.

3.1.2 Flow of Dependencies

The main idea behind the Onion architecture is the flow of dependencies,

or rather how the layers interact with each other. The deeper the layer

resides inside the Onion, the fewer dependencies it has.

The Domain layer does not have any direct dependencies on the outside

layers. It is isolated, in a way, from the outside world. The outer layers

are all allowed to reference the layers that are directly below them in the

hierarchy.

We can conclude that all the dependencies in the Onion architecture flow

inwards. But we should ask ourselves, why is this important?

34

The flow of dependencies dictates what a certain layer in the Onion

architecture can do. Because it depends on the layers below it in the

hierarchy, it can only call the methods that are exposed by the lower

layers.

We can use lower layers of the Onion architecture to define contracts or

interfaces. The outer layers of the architecture implement these

interfaces. This means that in the Domain layer, we are not concerning

ourselves with infrastructure details such as the database or external

services.

Using this approach, we can encapsulate all of the rich business logic in

the Domain and Service layers without ever having to know any

implementation details. In the Service layer, we are going to depend only

on the interfaces that are defined by the layer below, which is the Domain

layer.

So, after all the theory, we can continue with our project implementation.

Let’s start with the models and the Entities project.

Using the example from the second chapter of this book, we are going to

extract a new Class Library project named Entities.

Inside it, we are going to create a folder named Models, which will

contain all the model classes (entities). Entities represent classes that

Entity Framework Core uses to map our database model with the tables

from the database. The properties from entity classes will be mapped to

the database columns.

So, in the Models folder we are going to create two classes and modify

them:

public class Company
{
 [Column("CompanyId")]

35

 public Guid Id { get; set; }

 [Required(ErrorMessage = "Company name is a required field.")]
 [MaxLength(60, ErrorMessage = "Maximum length for the Name is 60 characters.")]
 public string? Name { get; set; }

 [Required(ErrorMessage = "Company address is a required field.")]
 [MaxLength(60, ErrorMessage = "Maximum length for the Address is 60 characters")]
 public string? Address { get; set; }

 public string? Country { get; set; }

 public ICollection<Employee>? Employees { get; set; }
}

public class Employee
{
 [Column("EmployeeId")]
 public Guid Id { get; set; }

 [Required(ErrorMessage = "Employee name is a required field.")]
 [MaxLength(30, ErrorMessage = "Maximum length for the Name is 30 characters.")]
 public string? Name { get; set; }

 [Required(ErrorMessage = "Age is a required field.")]
 public int Age { get; set; }

 [Required(ErrorMessage = "Position is a required field.")]
 [MaxLength(20, ErrorMessage = "Maximum length for the Position is 20
characters.")]
 public string? Position { get; set; }

 [ForeignKey(nameof(Company))]
 public Guid CompanyId { get; set; }
 public Company? Company { get; set; }
}

We have created two classes: the Company and Employee. Those classes

contain the properties which Entity Framework Core is going to map to

the columns in our tables in the database. But not all the properties will

be mapped as columns. The last property of the Company class

(Employees) and the last property of the Employee class (Company) are

navigational properties; these properties serve the purpose of defining the

relationship between our models.

We can see several attributes in our entities. The [Column] attribute will

specify that the Id property is going to be mapped with a different name

in the database. The [Required] and [MaxLength] properties are here

36

for validation purposes. The first one declares the property as mandatory

and the second one defines its maximum length.

Once we transfer our database model to the real database, we are going

to see how all these validation attributes and navigational properties

affect the column definitions.

Before we start with the context class creation, we have to create another

.NET Class Library and name it Repository. We are going to use this

project for the database context and repository implementation.

Now, let's create the context class, which will be a middleware component

for communication with the database. It must inherit from the Entity

Framework Core’s DbContext class and it consists of DbSet properties,

which EF Core is going to use for the communication with the database.

Because we are working with the DBContext class, we need to install the

Microsoft.EntityFrameworkCore package in the Repository project.

Also, we are going to reference the Entities project from the

Repository project:

Then, let’s navigate to the root of the Repository project and create the

RepositoryContext class:

public class RepositoryContext : DbContext
{
 public RepositoryContext(DbContextOptions options)
 : base(options)
 {
 }

37

 public DbSet<Company>? Companies { get; set; }
 public DbSet<Employee>? Employees { get; set; }
}

After the class modification, let’s open the appsettings.json file, in the

main project, and add the connection string named sqlconnection:

{
 "Logging": {
 "LogLevel": {
 "Default": "Warning"
 }
 },
 "ConnectionStrings": {
 "sqlConnection": "server=.; database=CompanyEmployee; Integrated Security=true"
 },
 "AllowedHosts": "*"
}

It is quite important to have the JSON object with the

ConnectionStrings name in our appsettings.json file, and soon you

will see why.

But first, we have to add the Repository project’s reference into the main

project.

Then, let’s create a new ContextFactory folder in the main project

and inside it a new RepositoryContextFactory class. Since our

RepositoryContext class is in a Repository project and not in the

main one, this class will help our application create a derived DbContext

instance during the design time which will help us with our migrations:

public class RepositoryContextFactory : IDesignTimeDbContextFactory<RepositoryContext>
{
 public RepositoryContext CreateDbContext(string[] args)
 {
 var configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("appsettings.json")
 .Build();

 var builder = new DbContextOptionsBuilder<RepositoryContext>()

 .UseSqlServer(configuration.GetConnectionString("sqlConnection"));

 return new RepositoryContext(builder.Options);
 }
}

38

We are using the IDesignTimeDbContextFactory<out TContext>

interface that allows design-time services to discover implementations of

this interface. Of course, the TContext parameter is our

RepositoryContext class.

For this, we need to add two using directives:

using Microsoft.EntityFrameworkCore.Design;
using Repository;

Then, we have to implement this interface with the CreateDbContext

method. Inside it, we create the configuration variable of the

IConfigurationRoot type and specify the appsettings file, we want to

use. With its help, we can use the GetConnectionString method to

access the connection string from the appsettings.json file. Moreover,

to be able to use the UseSqlServer method, we need to install the

Microsoft.EntityFrameworkCore.SqlServer package in the main

project and add one more using directive:

using Microsoft.EntityFrameworkCore;

If we navigate to the GetConnectionString method definition, we will

see that it is an extension method that uses the ConnectionStrings

name from the appsettings.json file to fetch the connection string by

the provided key:

Finally, in the CreateDbContext method, we return a new instance of

our RepositoryContext class with provided options.

39

Migration is a standard process of creating and updating the database

from our application. Since we are finished with the database model

creation, we can transfer that model to the real database. But we need to

modify our CreateDbContext method first:

var builder = new DbContextOptionsBuilder<RepositoryContext>()
 .UseSqlServer(configuration.GetConnectionString("sqlConnection"),
 b => b.MigrationsAssembly("CompanyEmployees"));

We have to make this change because migration assembly is not in our

main project, but in the Repository project. So, we’ve just changed the

project for the migration assembly.

Before we execute our migration commands, we have to install an

additional ef core library: Microsoft.EntityFrameworkCore.Tools

Now, let’s open the Package Manager Console window and create our first

migration: PM> Add-Migration DatabaseCreation

With this command, we are creating migration files and we can find them

in the Migrations folder in our main project:

With those files in place, we can apply migration: PM> Update-Database

40

Excellent. We can inspect our database now:

Once we have the database and tables created, we should populate them

with some initial data. To do that, we are going to create another folder in

the Repository project called Configuration and add the

CompanyConfiguration class:

public class CompanyConfiguration : IEntityTypeConfiguration<Company>
{
 public void Configure(EntityTypeBuilder<Company> builder)
 {
 builder.HasData
 (
 new Company
 {
 Id = new Guid("c9d4c053-49b6-410c-bc78-2d54a9991870"),
 Name = "IT_Solutions Ltd",
 Address = "583 Wall Dr. Gwynn Oak, MD 21207",
 Country = "USA"
 },
 new Company
 {
 Id = new Guid("3d490a70-94ce-4d15-9494-5248280c2ce3"),
 Name = "Admin_Solutions Ltd",
 Address = "312 Forest Avenue, BF 923",
 Country = "USA"
 }
);
 }
 }

41

Let’s do the same thing for the EmployeeConfiguration class:

public class EmployeeConfiguration : IEntityTypeConfiguration<Employee>
{
 public void Configure(EntityTypeBuilder<Employee> builder)
 {
 builder.HasData
 (
 new Employee
 {
 Id = new Guid("80abbca8-664d-4b20-b5de-024705497d4a"),
 Name = "Sam Raiden",
 Age = 26,
 Position = "Software developer",
 CompanyId = new Guid("c9d4c053-49b6-410c-bc78-2d54a9991870")
 },
 new Employee
 {
 Id = new Guid("86dba8c0-d178-41e7-938c-ed49778fb52a"),
 Name = "Jana McLeaf",
 Age = 30,
 Position = "Software developer",
 CompanyId = new Guid("c9d4c053-49b6-410c-bc78-2d54a9991870")
 },
 new Employee
 {
 Id = new Guid("021ca3c1-0deb-4afd-ae94-2159a8479811"),
 Name = "Kane Miller",
 Age = 35,
 Position = "Administrator",
 CompanyId = new Guid("3d490a70-94ce-4d15-9494-5248280c2ce3")
 }
);
 }
}

To invoke this configuration, we have to change the RepositoryContext

class:

public class RepositoryContext: DbContext
{
 public RepositoryContext(DbContextOptions options)
 : base(options)
 {
 }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.ApplyConfiguration(new CompanyConfiguration());
 modelBuilder.ApplyConfiguration(new EmployeeConfiguration());
 }

 public DbSet<Company> Companies { get; set; }
 public DbSet<Employee> Employees { get; set; }
}

42

Now, we can create and apply another migration to seed these data to the

database:

PM> Add-Migration InitialData

PM> Update-Database

This will transfer all the data from our configuration files to the respective

tables.

After establishing a connection to the database and creating one, it's time

to create a generic repository that will provide us with the CRUD methods.

As a result, all the methods can be called upon any repository class in our

project.

Furthermore, creating the generic repository and repository classes that

use that generic repository is not going to be the final step. We will go

a step further and create a wrapper class around repository classes and

inject it as a service in a dependency injection container.

Consequently, we will be able to instantiate this class once and then call

any repository class we need inside any of our controllers.

The advantages of this approach will become clearer once we use it in the

project.

That said, let’s start by creating an interface for the repository inside the

Contracts project:

public interface IRepositoryBase<T>
{
 IQueryable<T> FindAll(bool trackChanges);
 IQueryable<T> FindByCondition(Expression<Func<T, bool>> expression,
 bool trackChanges);
 void Create(T entity);
 void Update(T entity);
 void Delete(T entity);
}

43

Right after the interface creation, we are going to reference Contracts

inside the Repository project. Also, in the Repository project, we are

going to create an abstract class RepositoryBase — which is going to

implement the IRepositoryBase interface:

public abstract class RepositoryBase<T> : IRepositoryBase<T> where T : class
{
 protected RepositoryContext RepositoryContext;

 public RepositoryBase(RepositoryContext repositoryContext)
 => RepositoryContext = repositoryContext;

 public IQueryable<T> FindAll(bool trackChanges) =>
 !trackChanges ?
 RepositoryContext.Set<T>()
 .AsNoTracking() :
 RepositoryContext.Set<T>();

 public IQueryable<T> FindByCondition(Expression<Func<T, bool>> expression,
 bool trackChanges) =>
 !trackChanges ?
 RepositoryContext.Set<T>()
 .Where(expression)
 .AsNoTracking() :
 RepositoryContext.Set<T>()
 .Where(expression);

 public void Create(T entity) => RepositoryContext.Set<T>().Add(entity);

 public void Update(T entity) => RepositoryContext.Set<T>().Update(entity);

 public void Delete(T entity) => RepositoryContext.Set<T>().Remove(entity);
}

This abstract class as well as the IRepositoryBase interface work with

the generic type T. This type T gives even more reusability to the

RepositoryBase class. That means we don’t have to specify the exact

model (class) right now for the RepositoryBase to work with. We can do

that later on.

Moreover, we can see the trackChanges parameter. We are going to use

it to improve our read-only query performance. When it’s set to false, we

attach the AsNoTracking method to our query to inform EF Core that it

doesn’t need to track changes for the required entities. This greatly

improves the speed of a query.

44

Now that we have the RepositoryBase class, let’s create the user

classes that will inherit this abstract class.

By inheriting from the RepositoryBase class, they will have access to all

the methods from it. Furthermore, every user class will have its interface

for additional model-specific methods.

This way, we are separating the logic that is common for all our

repository user classes and also specific for every user class itself.

Let’s create the interfaces in the Contracts project for the Company and

Employee classes:

namespace Contracts
{
 public interface ICompanyRepository
 {
 }
}

namespace Contracts
{
 public interface IEmployeeRepository
 {
 }
}

After this, we can create repository user classes in the Repository

project.

The first thing we are going to do is to create the CompanyRepository

class:

public class CompanyRepository : RepositoryBase<Company>, ICompanyRepository
{
 public CompanyRepository(RepositoryContext repositoryContext)
 : base(repositoryContext)
 {
 }
}

And then, the EmployeeRepository class:

public class EmployeeRepository : RepositoryBase<Employee>, IEmployeeRepository

45

{
 public EmployeeRepository(RepositoryContext repositoryContext)
 : base(repositoryContext)
 {
 }
}

After these steps, we are finished creating the repository and repository-

user classes. But there are still more things to do.

It is quite common for the API to return a response that consists of data

from multiple resources; for example, all the companies and just some

employees older than 30. In such a case, we would have to instantiate

both of our repository classes and fetch data from their resources.

Maybe it’s not a problem when we have only two classes, but what if we

need the combined logic of five or even more different classes? It would

just be too complicated to pull that off.

With that in mind, we are going to create a repository manager class,

which will create instances of repository user classes for us and then

register them inside the dependency injection container. After that, we

can inject it inside our services with constructor injection (supported by

ASP.NET Core). With the repository manager class in place, we may call

any repository user class we need.

But we are also missing one important part. We have the Create,

Update, and Delete methods in the RepositoryBase class, but they

won’t make any change in the database until we call the SaveChanges

method. Our repository manager class will handle that as well.

That said, let’s get to it and create a new interface in

the Contract project:

public interface IRepositoryManager
{
 ICompanyRepository Company { get; }
 IEmployeeRepository Employee { get; }

46

 void Save();
}

And add a new class to the Repository project:

public sealed class RepositoryManager : IRepositoryManager
{
 private readonly RepositoryContext _repositoryContext;
 private readonly Lazy<ICompanyRepository> _companyRepository;
 private readonly Lazy<IEmployeeRepository> _employeeRepository;

 public RepositoryManager(RepositoryContext repositoryContext)
 {
 _repositoryContext = repositoryContext;
 _companyRepository = new Lazy<ICompanyRepository>(() => new
CompanyRepository(repositoryContext));
 _employeeRepository = new Lazy<IEmployeeRepository>(() => new
EmployeeRepository(repositoryContext));
 }

 public ICompanyRepository Company => _companyRepository.Value;
 public IEmployeeRepository Employee => _employeeRepository.Value;

 public void Save() => _repositoryContext.SaveChanges();
}

As you can see, we are creating properties that will expose the concrete

repositories and also we have the Save() method to be used after all the

modifications are finished on a certain object. This is a good practice

because now we can, for example, add two companies, modify two

employees, and delete one company — all in one action — and then just

call the Save method once. All the changes will be applied or if something

fails, all the changes will be reverted:

_repository.Company.Create(company);
_repository.Company.Create(anotherCompany);
_repository.Employee.Update(employee);
_repository.Employee.Update(anotherEmployee);
_repository.Company.Delete(oldCompany);

_repository.Save();

The interesting part with the RepositoryManager implementation is that

we are leveraging the power of the Lazy class to ensure the lazy

initialization of our repositories. This means that our repository instances

are only going to be created when we access them for the first time, and

not before that.

47

After these changes, we need to register our manager class in the main

project. So, let’s first modify the ServiceExtensions class by adding

this code:

public static void ConfigureRepositoryManager(this IServiceCollection services) =>
 services.AddScoped<IRepositoryManager, RepositoryManager>();

And in the Program class above the AddController() method, we have

to add this code:

builder.Services.ConfigureRepositoryManager();

Excellent.

As soon as we add some methods to the specific repository classes, and

add our service layer, we are going to be able to test this logic.

So, we did an excellent job here. The repository layer is prepared and

ready to be used to fetch data from the database.

Now, we can continue towards creating a service layer in our application.

The Service layer sits right above the Domain layer (the Contracts project

is the part of the Domain layer), which means that it has a reference to

the Domain layer. The Service layer will be split into two

projects, Service.Contracts and Service.

So, let’s start with the Service.Contracts project creation (.NET Core

Class Library) where we will hold the definitions for the service interfaces

that are going to encapsulate the main business logic. In the next section,

we are going to create a presentation layer and then, we will see the full

use of this project.

Once the project is created, we are going to add three interfaces inside it.

ICompanyService:

public interface ICompanyService

48

{
}

IEmployeeService:

public interface IEmployeeService
{
}

And IServiceManager:

public interface IServiceManager
{
 ICompanyService CompanyService { get; }
 IEmployeeService EmployeeService { get; }
}

As you can see, we are following the same pattern as with the repository

contracts implementation.

Now, we can create another project, name it Service, and reference the

Service.Contracts and Contracts projects inside it:

After that, we are going to create classes that will inherit from the

interfaces that reside in the Service.Contracts project.

So, let’s start with the CompanyService class:

using Contracts;
using Service.Contracts;

namespace Service
{
 internal sealed class CompanyService : ICompanyService
 {
 private readonly IRepositoryManager _repository;
 private readonly ILoggerManager _logger;

 public CompanyService(IRepositoryManager repository, ILoggerManager
logger)

49

 {
 _repository = repository;
 _logger = logger;
 }
 }
}

As you can see, our class inherits from the ICompanyService interface,

and we are injecting the IRepositoryManager and ILoggerManager

interfaces. We are going to use IRepositoryManager to access the

repository methods from each user repository class (CompanyRepository

or EmployeeRepository), and ILoggerManager to access the logging

methods we’ve created in the second section of this book.

To continue, let’s create a new EmployeeService class:

using Contracts;
using Service.Contracts;

namespace Service
{
 internal sealed class EmployeeService : IEmployeeService
 {
 private readonly IRepositoryManager _repository;
 private readonly ILoggerManager _logger;

 public EmployeeService(IRepositoryManager repository, ILoggerManager
logger)
 {
 _repository = repository;
 _logger = logger;
 }
 }
}

Finally, we are going to create the ServiceManager class:

public sealed class ServiceManager : IServiceManager
{
 private readonly Lazy<ICompanyService> _companyService;
 private readonly Lazy<IEmployeeService> _employeeService;

 public ServiceManager(IRepositoryManager repositoryManager, ILoggerManager
logger)
 {
 _companyService = new Lazy<ICompanyService>(() => new
CompanyService(repositoryManager, logger));
 _employeeService = new Lazy<IEmployeeService>(() => new
EmployeeService(repositoryManager, logger));
 }

 public ICompanyService CompanyService => _companyService.Value;
 public IEmployeeService EmployeeService => _employeeService.Value;

