

277

User authentication is an important part of any application. It refers to the

process of confirming the identity of an application’s users. Implementing

it properly could be a hard job if you are not familiar with the process.

Also, it could take a lot of time that could be spent on different features of

an application.

So, in this section, we are going to learn about authentication and

authorization in ASP.NET Core by using Identity and JWT (Json Web

Token). We are going to explain step by step how to integrate Identity in

the existing project and then how to implement JWT for the

authentication and authorization actions.

ASP.NET Core provides us with both functionalities, making

implementation even easier.

Finally, we are going to learn more about the refresh token flow and

implement it in our Web API project.

So, let’s start with Identity integration.

Asp.NET Core Identity is the membership system for web applications that

includes membership, login, and user data. It provides a rich set of

services that help us with creating users, hashing their passwords,

creating a database model, and the authentication overall.

That said, let’s start with the integration process.

The first thing we have to do is to install the

Microsoft.AspNetCore.Identity.EntityFrameworkCore library in

the Entities project:

278

After the installation, we are going to create a new User class in the

Entities/Models folder:

public class User : IdentityUser
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

Our class inherits from the IdentityUser class that has been provided

by the ASP.NET Core Identity. It contains different properties and we can

extend it with our own as well.

After that, we have to modify the RepositoryContext class:

public class RepositoryContext : IdentityDbContext<User>
{
 public RepositoryContext(DbContextOptions options)
 : base(options)
 {
 }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 base.OnModelCreating(modelBuilder);

 modelBuilder.ApplyConfiguration(new CompanyConfiguration());
 modelBuilder.ApplyConfiguration(new EmployeeConfiguration());
 }

 public DbSet<Company> Companies { get; set; }
 public DbSet<Employee> Employees { get; set; }
}

So, our class now inherits from the IdentityDbContext class and not

DbContext because we want to integrate our context with Identity. For

this, we have to include the Identity.EntityFrameworkCore

namespace:

using Microsoft.AspNetCore.Identity.EntityFrameworkCore;

279

We don’t have to install the library in the Repository project since we

already did that in the Entities project, and Repository has the

reference to Entities.

Additionally, we call the OnModelCreating method from the base class.

This is required for migration to work properly.

Now, we have to move on to the configuration part.

To do that, let’s create a new extension method in the

ServiceExtensions class:

public static void ConfigureIdentity(this IServiceCollection services)
{
 var builder = services.AddIdentity<User, IdentityRole>(o =>
 {
 o.Password.RequireDigit = true;
 o.Password.RequireLowercase = false;
 o.Password.RequireUppercase = false;
 o.Password.RequireNonAlphanumeric = false;
 o.Password.RequiredLength = 10;
 o.User.RequireUniqueEmail = true;
 })
 .AddEntityFrameworkStores<RepositoryContext>()
 .AddDefaultTokenProviders();
}

With the AddIdentity method, we are adding and configuring Identity

for the specific type; in this case, the User and the IdentityRole type.

We use different configuration parameters that are pretty self-explanatory

on their own. Identity provides us with even more features to configure,

but these are sufficient for our example.

Then, we add EntityFrameworkStores implementation with the default

token providers.

Now, let’s modify the Program class:

builder.Services.AddAuthentication();
builder.Services.ConfigureIdentity();

And, let’s add the authentication middleware to the application’s request

pipeline:

280

app.UseAuthentication();
app.UseAuthorization();

That’s it. We have prepared everything we need.

Creating tables is quite an easy process. All we have to do is to create

and apply migration. So, let’s create a migration:

PM> Add-Migration CreatingIdentityTables

And then apply it:

PM> Update-Database

If we check our database now, we are going to see additional tables:

For our project, the AspNetRoles, AspNetUserRoles, and AspNetUsers

tables will be quite enough. If you open the AspNetUsers table, you will

see additional FirstName and LastName columns.

Now, let’s insert several roles in the AspNetRoles table, again by using

migrations. The first thing we are going to do is to create the

RoleConfiguration class in the Repository/Configuration folder:

public class RoleConfiguration : IEntityTypeConfiguration<IdentityRole>
{
 public void Configure(EntityTypeBuilder<IdentityRole> builder)
 {

281

 builder.HasData(
 new IdentityRole
 {
 Name = "Manager",
 NormalizedName = "MANAGER"
 },
 new IdentityRole
 {
 Name = "Administrator",
 NormalizedName = "ADMINISTRATOR"
 }
);
}

For this to work, we need the following namespaces included:

using Microsoft.AspNetCore.Identity;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Metadata.Builders;

And let’s modify the OnModelCreating method in the

RepositoryContext class:

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 base.OnModelCreating(modelBuilder);

 modelBuilder.ApplyConfiguration(new CompanyConfiguration());
 modelBuilder.ApplyConfiguration(new EmployeeConfiguration());
 modelBuilder.ApplyConfiguration(new RoleConfiguration());
}

Finally, let’s create and apply migration:

PM> Add-Migration AddedRolesToDb

PM> Update-Database

If you check the AspNetRoles table, you will find two new roles created.

To create/register a new user, we have to create a new controller:

[Route("api/authentication")]
[ApiController]
public class AuthenticationController : ControllerBase
{
 private readonly IServiceManager _service;

 public AuthenticationController(IServiceManager service) => _service = service;
}

282

So, nothing new here. We have the basic setup for our controller with

IServiceManager injected.

The next thing we have to do is to create a UserForRegistrationDto

record in the Shared/DataTransferObjects folder:

public record UserForRegistrationDto
{
 public string? FirstName { get; init; }
 public string? LastName { get; init; }
 [Required(ErrorMessage = "Username is required")]
 public string? UserName { get; init; }
 [Required(ErrorMessage = "Password is required")]
 public string? Password { get; init; }
 public string? Email { get; init; }
 public string? PhoneNumber { get; init; }
 public ICollection<string>? Roles { get; init; }
}

Then, let’s create a mapping rule in the MappingProfile class:

CreateMap<UserForRegistrationDto, User>();

Since we want to extract all the registration/authentication logic to the

service layer, we are going to create a new IAuthenticationService

interface inside the Service.Contracts project:

public interface IAuthenticationService
{
 Task<IdentityResult> RegisterUser(UserForRegistrationDto userForRegistration);
}

This method will execute the registration logic and return the identity

result to the caller.

Now that we have the interface, we need to create an implementation

service class inside the Service project:

internal sealed class AuthenticationService : IAuthenticationService
{
 private readonly ILoggerManager _logger;
 private readonly IMapper _mapper;
 private readonly UserManager<User> _userManager;
 private readonly IConfiguration _configuration;

 public AuthenticationService(ILoggerManager logger, IMapper mapper,
 UserManager<User> userManager, IConfiguration configuration)
 {
 _logger = logger;

283

 _mapper = mapper;
 _userManager = userManager;
 _configuration = configuration;
 }
}

This code is pretty familiar from the previous service classes except for

the UserManager class. This class is used to provide the APIs for

managing users in a persistence store. It is not concerned with how user

information is stored. For this, it relies on a UserStore (which in our case

uses Entity Framework Core).

Of course, we have to add some additional namespaces:

using AutoMapper;
using Contracts;
using Entities.Models;
using Microsoft.AspNetCore.Identity;
using Microsoft.Extensions.Configuration;
using Service.Contracts;

Great. Now, we can implement the RegisterUser method:

public async Task<IdentityResult> RegisterUser(UserForRegistrationDto
userForRegistration)
{
 var user = _mapper.Map<User>(userForRegistration);

 var result = await _userManager.CreateAsync(user,
userForRegistration.Password);

 if (result.Succeeded)
 await _userManager.AddToRolesAsync(user, userForRegistration.Roles);

 return result;
}

So we map the DTO object to the User object and call the CreateAsync

method to create that specific user in the database. The CreateAsync

method will save the user to the database if the action succeeds or it will

return error messages as a result.

After that, if a user is created, we add that user to the named roles — the

ones sent from the client side — and return the result.

284

If you want, before calling AddToRoleAsync or AddToRolesAsync, you

can check if roles exist in the database. But for that, you have to inject

RoleManager<TRole> and use the RoleExistsAsync method.

We want to provide this service to the caller through ServiceManager

and for that, we have to modify the IServiceManager interface first:

public interface IServiceManager
{
 ICompanyService CompanyService { get; }
 IEmployeeService EmployeeService { get; }
 IAuthenticationService AuthenticationService { get; }
}

And then the ServiceManager class:

public sealed class ServiceManager : IServiceManager
{
 private readonly Lazy<ICompanyService> _companyService;
 private readonly Lazy<IEmployeeService> _employeeService;
 private readonly Lazy<IAuthenticationService> _authenticationService;

 public ServiceManager(IRepositoryManager repositoryManager,
 ILoggerManager logger,
 IMapper mapper, IEmployeeLinks employeeLinks,
 UserManager<User> userManager,
 IConfiguration configuration)
 {
 _companyService = new Lazy<ICompanyService>(() =>
 new CompanyService(repositoryManager, logger, mapper));
 _employeeService = new Lazy<IEmployeeService>(() =>
 new EmployeeService(repositoryManager, logger, mapper,
employeeLinks));
 _authenticationService = new Lazy<IAuthenticationService>(() =>
 new AuthenticationService(logger, mapper, userManager,
configuration));
 }

 public ICompanyService CompanyService => _companyService.Value;
 public IEmployeeService EmployeeService => _employeeService.Value;
 public IAuthenticationService AuthenticationService =>
_authenticationService.Value;
}

Finally, it is time to create the RegisterUser action:

[HttpPost]
[ServiceFilter(typeof(ValidationFilterAttribute))]
public async Task<IActionResult> RegisterUser([FromBody] UserForRegistrationDto
userForRegistration)
{
 var result = await
_service.AuthenticationService.RegisterUser(userForRegistration);
 if (!result.Succeeded)

285

 {
 foreach (var error in result.Errors)
 {
 ModelState.TryAddModelError(error.Code, error.Description);
 }
 return BadRequest(ModelState);
 }

 return StatusCode(201);
}

We are implementing our existing action filter for the entity and model

validation on top of our action. Then, we call the RegisterUser method

and accept the result. If the registration fails, we iterate through each

error add it to the ModelState and return the BadRequest response.

Otherwise, we return the 201 created status code.

Before we continue with testing, we should increase a rate limit from 3 to

30 (ServiceExtensions class, ConfigureRateLimitingOptions

method) just to not stand in our way while we’re testing the different

features of our application.

Now we can start with testing.

Let’s send a valid request first:

https://localhost:5001/api/authentication

286

And we get 201, which means that the user has been created and added

to the role. We can send additional invalid requests to test our Action and

Identity features.

If the model is invalid:

https://localhost:5001/api/authentication

If the password is invalid:

https://localhost:5001/api/authentication

Finally, if we want to create a user with the same user name and email:

https://localhost:5001/api/authentication

Excellent. Everything is working as planned. We can move on to the JWT

implementation.

287

Before we get into the implementation of authentication and

authorization, let’s have a quick look at the big picture. There is an

application that has a login form. A user enters their username and

password and presses the login button. After pressing the login button, a

client (e.g., web browser) sends the user’s data to the server’s API

endpoint:

When the server validates the user’s credentials and confirms that the

user is valid, it’s going to send an encoded JWT to the client. A JSON web

token is a JavaScript object that can contain some attributes of the

logged-in user. It can contain a username, user subject, user roles, or

some other useful information.

JSON web tokens enable a secure way to transmit data between two

parties in the form of a JSON object. It’s an open standard and it’s a

popular mechanism for web authentication. In our case, we are going to

use JSON web tokens to securely transfer a user’s data between the client

and the server.

JSON web tokens consist of three basic parts: the header, the payload,

and the signature.

One real example of a JSON web token:

288

Every part of all three parts is shown in a different color. The first part of

JWT is the header, which is a JSON object encoded in the base64 format.

The header is a standard part of JWT and we don’t have to worry about it.

It contains information like the type of token and the name of the

algorithm:

 {
 "alg": "HS256",
 "typ": "JWT"
 }

After the header, we have a payload which is also a JavaScript object

encoded in the base64 format. The payload contains some attributes

about the logged-in user. For example, it can contain the user id, the user

subject, and information about whether a user is an admin user or not.

JSON web tokens are not encrypted and can be decoded with any

base64 decoder, so please never include sensitive information in the

Payload:

{
 "sub": "1234567890",
 "name": "John Doe",
 "iat": 1516239022
}

Finally, we have the signature part. Usually, the server uses the signature

part to verify whether the token contains valid information, the

information which the server is issuing. It is a digital signature that gets

generated by combining the header and the payload. Moreover, it’s based

on a secret key that only the server knows:

289

So, if malicious users try to modify the values in the payload, they have

to recreate the signature; for that purpose, they need the secret key only

known to the server. On the server side, we can easily verify if the values

are original or not by comparing the original signature with a new

signature computed from the values coming from the client.

So, we can easily verify the integrity of our data just by comparing the

digital signatures. This is the reason why we use JWT.

Let’s start by modifying the appsettings.json file:

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft.AspNetCore": "Warning",
 }
 },
 "ConnectionStrings": {
 "sqlConnection": "server=.; database=CompanyEmployee; Integrated Security=true"
 },
 "JwtSettings": {
 "validIssuer": "CodeMazeAPI",
 "validAudience": "https://localhost:5001"
 },
 "AllowedHosts": "*"
}

We just store the issuer and audience information in the appsettings.json

file. We are going to talk more about that in a minute. As you probably

remember, we require a secret key on the server-side. So, we are going

to create one and store it in the environment variable because this is

much safer than storing it inside the project.

