

98

In this section, we are going to show you how to use the POST HTTP

method to create resources in the database.

So, let’s start.

Firstly, let’s modify the decoration attribute for the GetCompany action in

the Companies controller:

[HttpGet("{id:guid}", Name = "CompanyById")]

With this modification, we are setting the name for the action. This name

will come in handy in the action method for creating a new company.

We have a DTO class for the output (the GET methods), but right now we

need the one for the input as well. So, let’s create a new record in the

Shared/DataTransferObjects folder:

public record CompanyForCreationDto(string Name, string Address, string Country);

We can see that this DTO record is almost the same as the Company

record but without the Id property. We don’t need that property when we

create an entity.

We should pay attention to one more thing. In some projects, the input

and output DTO classes are the same, but we still recommend separating

them for easier maintenance and refactoring of our code. Furthermore,

when we start talking about validation, we don’t want to validate the

output objects — but we definitely want to validate the input ones.

With all of that said and done, let’s continue by modifying the

ICompanyRepository interface:

public interface ICompanyRepository
{
 IEnumerable<Company> GetAllCompanies(bool trackChanges);

99

 Company GetCompany(Guid companyId, bool trackChanges);
 void CreateCompany(Company company);
}

After the interface modification, we are going to implement that interface:

public void CreateCompany(Company company) => Create(company);

We don’t explicitly generate a new Id for our company; this would be

done by EF Core. All we do is to set the state of the company to Added.

Next, we want to modify the ICompanyService interface:

public interface ICompanyService
{
 IEnumerable<CompanyDto> GetAllCompanies(bool trackChanges);
 CompanyDto GetCompany(Guid companyId, bool trackChanges);
 CompanyDto CreateCompany(CompanyForCreationDto company);
}

And of course, we have to implement this method in the

CompanyService class:

public CompanyDto CreateCompany(CompanyForCreationDto company)
{
 var companyEntity = _mapper.Map<Company>(company);

 _repository.Company.CreateCompany(companyEntity);
 _repository.Save();

 var companyToReturn = _mapper.Map<CompanyDto>(companyEntity);

 return companyToReturn;
}

Here, we map the company for creation to the company entity, call the

repository method for creation, and call the Save() method to save the

entity to the database. After that, we map the company entity to the

company DTO object to return it to the controller.

But we don’t have the mapping rule for this so we have to create another

mapping rule for the Company and CompanyForCreationDto objects.

Let’s do this in the MappingProfile class:

public MappingProfile()
{
 CreateMap<Company, CompanyDto>()
 .ForMember(c => c.FullAddress,

100

 opt => opt.MapFrom(x => string.Join(' ', x.Address, x.Country)));

 CreateMap<Employee, EmployeeDto>();

 CreateMap<CompanyForCreationDto, Company>();
}

Our POST action will accept a parameter of the type

CompanyForCreationDto, and as you can see our service method

accepts the parameter of the same type as well, but we need the

Company object to send it to the repository layer for creation. Therefore,

we have to create this mapping rule.

Last, let’s modify the controller:

[HttpPost]
public IActionResult CreateCompany([FromBody] CompanyForCreationDto company)
{
 if (company is null)
 return BadRequest("CompanyForCreationDto object is null");

 var createdCompany = _service.CompanyService.CreateCompany(company);

 return CreatedAtRoute("CompanyById", new { id = createdCompany.Id },
createdCompany);
}

Let’s use Postman to send the request and examine the result:

https://localhost:5001/api/companies

101

Let’s talk a little bit about this code. The interface and the repository parts

are pretty clear, so we won’t talk about that. We have already explained

the code in the service method. But the code in the controller contains

several things worth mentioning.

If you take a look at the request URI, you’ll see that we use the same one

as for the GetCompanies action: api/companies — but this time we are

using the POST request.

The CreateCompany method has its own [HttpPost] decoration

attribute, which restricts it to POST requests. Furthermore, notice the

company parameter which comes from the client. We are not collecting it

from the URI but the request body. Thus the usage of

the [FromBody] attribute. Also, the company object is a complex type;

therefore, we have to use [FromBody].

If we wanted to, we could explicitly mark the action to take this

parameter from the URI by decorating it with the [FromUri] attribute,

though we wouldn’t recommend that at all because of security reasons

and the complexity of the request.

Because the company parameter comes from the client, it could happen

that it can’t be deserialized. As a result, we have to validate it against the

reference type’s default value, which is null.

The last thing to mention is this part of the code:

CreatedAtRoute("CompanyById", new { id = companyToReturn.Id }, companyToReturn);

CreatedAtRoute will return a status code 201, which stands for

Created. Also, it will populate the body of the response with the new

company object as well as the Location attribute within the

response header with the address to retrieve that company. We need to

provide the name of the action, where we can retrieve the created entity.

102

If we take a look at the headers part of our response, we are going to see

a link to retrieve the created company:

Finally, from the previous example, we can confirm that the POST method

is neither safe nor idempotent. We saw that when we send the POST

request, it is going to create a new resource in the database — thus

changing the resource representation. Furthermore, if we try to send this

request a couple of times, we will get a new object for every request (it

will have a different Id for sure).

Excellent.

There is still one more thing we need to explain.

9.2.1 Validation from the ApiController Attribute

In this section, we are going to talk about the [ApiController] attribute

that we can find right below the [Route] attribute in our controller:

[Route("api/companies")]
[ApiController]
public class CompaniesController : ControllerBase
{

But, before we start with the explanation, let’s place a breakpoint in the

CreateCompany action, right on the if (company is null) check.

Then, let’s use Postman to send an invalid POST request:

103

https://localhost:5001/api/companies

We are going to talk about Validation in chapter 13, but for now, we have

to explain a couple of things.

First of all, we have our response - a Bad Request in Postman, and we

have error messages that state what’s wrong with our request. But, we

never hit that breakpoint that we’ve placed inside the CreateCompany

action.

Why is that?

Well, the [ApiController] attribute is applied to a controller class to

enable the following opinionated, API-specific behaviors:

 Attribute routing requirement

 Automatic HTTP 400 responses

 Binding source parameter inference

 Multipart/form-data request inference

 Problem details for error status codes

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://docs.microsoft.com/en-us/aspnet/core/web-api/?view=aspnetcore-5.0#attribute-routing-requirement
https://docs.microsoft.com/en-us/aspnet/core/web-api/?view=aspnetcore-5.0#automatic-http-400-responses
https://docs.microsoft.com/en-us/aspnet/core/web-api/?view=aspnetcore-5.0#binding-source-parameter-inference
https://docs.microsoft.com/en-us/aspnet/core/web-api/?view=aspnetcore-5.0#multipartform-data-request-inference
https://docs.microsoft.com/en-us/aspnet/core/web-api/?view=aspnetcore-5.0#problem-details-for-error-status-codes

104

As you can see, it handles the HTTP 400 responses, and in our case, since

the request’s body is null, the [ApiController] attribute handles that

and returns the 400 (BadReqeust) response before the request even hits

the CreateCompany action.

This is useful behavior, but it prevents us from sending our custom

responses with different messages and status codes to the client. This will

be very important once we get to the Validation.

So to enable our custom responses from the actions, we are going to add

this code into the Program class right above the AddControllers

method:

builder.Services.Configure<ApiBehaviorOptions>(options =>
{
 options.SuppressModelStateInvalidFilter = true;
});

With this, we are suppressing a default model state validation that is

implemented due to the existence of the [ApiController] attribute in

all API controllers. So this means that we can solve the same problem

differently, by commenting out or removing the [ApiController]

attribute only, without additional code for suppressing validation. It's all

up to you. But we like keeping it in our controllers because, as you

could’ve seen, it provides additional functionalities other than just 400 –

Bad Request responses.

Now, once we start the app and send the same request, we will hit that

breakpoint and see our response in Postman.

Nicely done.

Now, we can remove that breakpoint and continue with learning about the

creation of child resources.

105

While creating our company, we created the DTO object required for the

CreateCompany action. So, for employee creation, we are going to do the

same thing:

public record EmployeeForCreationDto(string Name, int Age, string Position);

We don’t have the Id property because we are going to create that Id on

the server-side. But additionally, we don’t have the CompanyId because

we accept that parameter through the route:

[Route("api/companies/{companyId}/employees")]

The next step is to modify the IEmployeeRepository interface:

public interface IEmployeeRepository
{
 IEnumerable<Employee> GetEmployees(Guid companyId, bool trackChanges);
 Employee GetEmployee(Guid companyId, Guid id, bool trackChanges);
 void CreateEmployeeForCompany(Guid companyId, Employee employee);
}

Of course, we have to implement this interface:

public void CreateEmployeeForCompany(Guid companyId, Employee employee)
{
 employee.CompanyId = companyId;
 Create(employee);
}

Because we are going to accept the employee DTO object in our action

and send it to a service method, but we also have to send an employee

object to this repository method, we have to create an additional mapping

rule in the MappingProfile class:

CreateMap<EmployeeForCreationDto, Employee>();

The next thing we have to do is IEmployeeService modification:

public interface IEmployeeService
{
 IEnumerable<EmployeeDto> GetEmployees(Guid companyId, bool trackChanges);
 EmployeeDto GetEmployee(Guid companyId, Guid id, bool trackChanges);
 EmployeeDto CreateEmployeeForCompany(Guid companyId, EmployeeForCreationDto
employeeForCreation, bool trackChanges);
}

106

And implement this new method in EmployeeService:

public EmployeeDto CreateEmployeeForCompany(Guid companyId, EmployeeForCreationDto
employeeForCreation, bool trackChanges)
{
 var company = _repository.Company.GetCompany(companyId, trackChanges);
 if (company is null)
 throw new CompanyNotFoundException(companyId);

 var employeeEntity = _mapper.Map<Employee>(employeeForCreation);

 _repository.Employee.CreateEmployeeForCompany(companyId, employeeEntity);
 _repository.Save();

 var employeeToReturn = _mapper.Map<EmployeeDto>(employeeEntity);

 return employeeToReturn;
}

We have to check whether that company exists in the database because

there is no point in creating an employee for a company that does not

exist. After that, we map the DTO to an entity, call the repository

methods to create a new employee, map back the entity to the DTO, and

return it to the caller.

Now, we can add a new action in the EmployeesController:

[HttpPost]
public IActionResult CreateEmployeeForCompany(Guid companyId, [FromBody]
EmployeeForCreationDto employee)
{
 if (employee is null)
 return BadRequest("EmployeeForCreationDto object is null");

 var employeeToReturn =
_service.EmployeeService.CreateEmployeeForCompany(companyId, employee, trackChanges:
false);

 return CreatedAtRoute("GetEmployeeForCompany", new { companyId, id =
employeeToReturn.Id },
 employeeToReturn);
}

As we can see, the main difference between this action and the

CreateCompany action (if we exclude the fact that we are working with

different DTOs) is the return statement, which now has two parameters

for the anonymous object.

107

For this to work, we have to modify the HTTP attribute above the

GetEmployeeForCompany action:

[HttpGet("{id:guid}", Name = "GetEmployeeForCompany")]

Let’s give this a try:

https://localhost:5001/api/companies/ 14759d51-e9c1-4afc-f9bf-08d98898c9c3/employees

Excellent. A new employee was created.

If we take a look at the Headers tab, we'll see a link to fetch our newly

created employee. If you copy that link and send another request with it,

you will get this employee for sure:

